Example #1
0
def main(data_dir, lib_dir, model_name, batch_size=10):
    ckpt_dir = os.path.join(os.path.dirname(__file__), 'models', model_name)
    clip, fc_filters, tconv_Fnums, tconv_dims, tconv_filters, n_filter, n_branch, \
    reg_scale = network_helper.get_parameters(ckpt_dir)

    print('defining input data')
    features, pred_init_op = import_data(data_dir=data_dir,
                                         batch_size=batch_size)

    print('making network')
    # make network
    ntwk = network_maker.CnnNetwork(features, [],
                                    utils.my_model_fn_tens,
                                    batch_size,
                                    clip=clip,
                                    fc_filters=fc_filters,
                                    tconv_Fnums=tconv_Fnums,
                                    tconv_dims=tconv_dims,
                                    n_filter=n_filter,
                                    n_branch=n_branch,
                                    reg_scale=reg_scale,
                                    tconv_filters=tconv_filters,
                                    make_folder=False)

    print('defining save file')
    save_file = os.path.join('.', lib_dir)

    # evaluate the model for each geometry in the grid file
    print('executing the model ...')
    pred_file = ntwk.predictBin3(pred_init_op,
                                 ckpt_dir=ckpt_dir,
                                 model_name=model_name,
                                 save_file=save_file)
    return pred_file
Example #2
0
def main(flags):

    # initialize data reader

    # optional for what type of layer the network ends with
    if len(flags.tconv_dims) == 0:
        output_size = flags.fc_filters[-1]
    else:
        output_size = flags.tconv_dims[-1]

    features, labels, train_init_op, valid_init_op = data_reader.read_data(
        input_size=flags.input_size,
        output_size=output_size - 2 * flags.clip,
        x_range=flags.x_range,
        y_range=flags.y_range,
        cross_val=flags.cross_val,
        val_fold=flags.val_fold,
        batch_size=flags.batch_size,
        shuffle_size=flags.shuffle_size)

    # make network
    ntwk = network_maker.CnnNetwork(features,
                                    labels,
                                    utils.my_model_fn_tens,
                                    flags.batch_size,
                                    clip=flags.clip,
                                    fc_filters=flags.fc_filters,
                                    tconv_Fnums=flags.tconv_Fnums,
                                    tconv_dims=flags.tconv_dims,
                                    tconv_filters=flags.tconv_filters,
                                    n_filter=flags.n_filter,
                                    n_branch=flags.n_branch,
                                    reg_scale=flags.reg_scale,
                                    learn_rate=flags.learn_rate,
                                    decay_step=flags.decay_step,
                                    decay_rate=flags.decay_rate)
    # define hooks for monitoring training
    train_hook = network_helper.TrainValueHook(flags.verb_step,
                                               ntwk.loss,
                                               ckpt_dir=ntwk.ckpt_dir,
                                               write_summary=True)
    lr_hook = network_helper.TrainValueHook(flags.verb_step,
                                            ntwk.learn_rate,
                                            ckpt_dir=ntwk.ckpt_dir,
                                            write_summary=True,
                                            value_name='learning_rate')
    valid_hook = network_helper.ValidationHook(flags.eval_step,
                                               valid_init_op,
                                               ntwk.labels,
                                               ntwk.logits,
                                               ntwk.loss,
                                               ntwk.preconv,
                                               ntwk.preTconv,
                                               ckpt_dir=ntwk.ckpt_dir,
                                               write_summary=True)
    # train the network
    ntwk.train(train_init_op,
               flags.train_step, [train_hook, valid_hook, lr_hook],
               write_summary=True)
Example #3
0
def main(flags):
    # initialize data reader
    if len(flags.tconv_dims) == 0:
        output_size = flags.fc_filters[-1]
    else:
        output_size = flags.tconv_dims[-1]
    reader = data_reader.DataReader(input_size=flags.input_size,
                                    output_size=output_size,
                                    x_range=flags.x_range,
                                    y_range=flags.y_range,
                                    cross_val=flags.cross_val,
                                    val_fold=flags.val_fold,
                                    batch_size=flags.batch_size,
                                    shuffle_size=flags.shuffle_size)
    features, labels, train_init_op, valid_init_op = reader.get_data_holder_and_init_op(
        (flags.train_file, flags.valid_file))

    # make network
    ntwk = network_maker.CnnNetwork(features,
                                    labels,
                                    utils.my_model_fn,
                                    flags.batch_size,
                                    fc_filters=flags.fc_filters,
                                    tconv_dims=flags.tconv_dims,
                                    tconv_filters=flags.tconv_filters,
                                    learn_rate=flags.learn_rate,
                                    decay_step=flags.decay_step,
                                    decay_rate=flags.decay_rate)
    # define hooks for monitoring training
    train_hook = network_helper.TrainValueHook(flags.verb_step,
                                               ntwk.loss,
                                               ckpt_dir=ntwk.ckpt_dir,
                                               write_summary=True)
    lr_hook = network_helper.TrainValueHook(flags.verb_step,
                                            ntwk.learn_rate,
                                            ckpt_dir=ntwk.ckpt_dir,
                                            write_summary=True,
                                            value_name='learning_rate')
    valid_hook = network_helper.ValidationHook(flags.eval_step,
                                               valid_init_op,
                                               ntwk.labels,
                                               ntwk.logits,
                                               ntwk.loss,
                                               ckpt_dir=ntwk.ckpt_dir,
                                               write_summary=True)
    # train the network
    ntwk.train(train_init_op,
               flags.train_step, [train_hook, valid_hook, lr_hook],
               write_summary=True)
Example #4
0
def main(flags):
    ckpt_dir = os.path.join(os.path.dirname(__file__), 'models',
                            flags.model_name)
    clip, fc_filters, tconv_Fnums, tconv_dims, tconv_filters, n_filter, n_branch, reg_scale = network_helper.get_parameters(
        ckpt_dir)
    print(ckpt_dir)
    # initialize data reader
    if len(tconv_dims) == 0:
        output_size = fc_filters[-1]
    else:
        output_size = tconv_dims[-1]
    features, labels, train_init_op, valid_init_op = data_reader.read_data(
        input_size=flags.input_size,
        output_size=output_size - 2 * clip,
        x_range=flags.x_range,
        y_range=flags.y_range,
        cross_val=flags.cross_val,
        val_fold=flags.val_fold,
        batch_size=flags.batch_size,
        shuffle_size=flags.shuffle_size)
    # make network
    ntwk = network_maker.CnnNetwork(features,
                                    labels,
                                    utils.my_model_fn_tens,
                                    flags.batch_size,
                                    clip,
                                    fc_filters=fc_filters,
                                    tconv_Fnums=tconv_Fnums,
                                    tconv_dims=tconv_dims,
                                    n_filter=n_filter,
                                    n_branch=n_branch,
                                    reg_scale=reg_scale,
                                    tconv_filters=tconv_filters,
                                    learn_rate=flags.learn_rate,
                                    decay_step=flags.decay_step,
                                    decay_rate=flags.decay_rate,
                                    make_folder=False)

    # evaluate the results if the results do not exist or user force to re-run evaluation
    save_file = os.path.join(os.path.dirname(__file__), 'data',
                             'test_pred_{}.csv'.format(flags.model_name))
    if FORCE_RUN or (not os.path.exists(save_file)):
        print('Evaluating the model ...')
        pred_file, truth_file = ntwk.evaluate(valid_init_op,
                                              ckpt_dir=ckpt_dir,
                                              model_name=flags.model_name,
                                              write_summary=True)
    else:
        pred_file = save_file
        truth_file = os.path.join(os.path.dirname(__file__), 'data',
                                  'test_truth.csv')

    mae, mse = compare_truth_pred(pred_file, truth_file)

    plt.figure(figsize=(12, 6))
    plt.hist(mse, bins=100)
    plt.xlabel('Mean Squared Error')
    plt.ylabel('cnt')
    plt.suptitle('FC + TCONV (Avg MSE={:.4e})'.format(np.mean(mse)))
    plt.savefig(
        os.path.join(
            os.path.dirname(__file__), 'data',
            'fc_tconv_single_channel_result_cmp_{}.png'.format(
                flags.model_name)))
    plt.show()
    print('FC + TCONV (Avg MSE={:.4e})'.format(np.mean(mse)))