Example #1
0
def simple_scenario_ipynb():
    place_name = 'Greece'
    cf = '["highway"~"motorway|motorway_link|trunk|secondary|primary"]'
    net_type = 'drive'
    graph = net_ops.get_network_graph(place_name, net_type, cf)
    nodes, edges = net_ops.get_nodes_edges(graph)
    scenario_two_paths(graph, edges, 3744263637, 300972555, 295512257,
                       1604968703, 'traffic', 'loaded_edges.csv')
Example #2
0
def main():
    # declare all variables (may be input vars later)
    POIs_fpath = 'data/attica-supermarket.geojson'
    graph_fpath = 'data/attica_graph.graphml'
    algorithm = ''
    # read points of interest (data)
    point_coords_list = create_pois_df(POIs_fpath)
    graph = net_ops.load_graph_from_disk(graph_fpath)
    assigned_nodes_list = assign_points_to_nodes(point_coords_list, graph)
    nodes, edges = net_ops.get_nodes_edges(graph)
    update_graph_nodes_with_POIs(nodes, assigned_nodes_list)
    pdb.set_trace()
Example #3
0
def run_tavros_scenario():
    super_graph = get_athens_local_networks_scenario(
        '../data/dimoi_athinas.csv', '../results/graphs/', 'Tavros',
        3744263637, 8067989857)
    custom_dijkstra('../results/supergraph.graphml', '../results/', 3744263637,
                    8067989857)
    plot_route_in_graph(super_graph, 3744263637, 8067989857)

    #babis
    nodes, edges = net_ops.get_nodes_edges(super_graph)
    net_ops.write_nodes_edges_to_disk(nodes, edges, 'supergraph',
                                      '../results/')
Example #4
0
def custom_dijkstra_all_vs_all(src_graph_fp, csv_src_fp, results_csv_fpath,
                               node):
    # read the csv file and get the list of nodes
    df = pandas.read_csv(csv_src_fp, sep=';')
    nodes_list = df[node].to_list()
    combo_list = net_ops.get_all_list_combinations(nodes_list)
    graph = net_ops.load_graph_from_disk(src_graph_fp)
    nodes, edges = net_ops.get_nodes_edges(graph)
    # get edges of network in appropriate form for custom dijkstra
    dijkstra_edges = min_ops.create_dijkstra_edge_list(edges, nodes)
    #TODO here we are
    custom_dijkstra_all_nodes_vs_all(combo_list, graph, edges, 'traffic',
                                     dijkstra_edges, results_csv_fpath)
Example #5
0
def flora(src_graph_fp, csv_src_fp, results_csv_fpath, new_col='traffic'):
    # get the graph from disk
    graph = net_ops.load_graph_from_disk(src_graph_fp)
    nodes, edges = net_ops.get_nodes_edges(graph)
    # read the points of interest to df
    pois_df = io_ops.convert_csv_to_nodes(csv_src_fp)
    poi_nodes = assign_POIs_to_graph(graph, pois_df)
    # assign new fields and values to nodes of the network
    enhance_network_nodes_with_field(nodes,
                                     poi_nodes,
                                     new_field='supermarkets',
                                     field_name='AB')
    # create distance matrix
    data, dist_matrix_nodes_dict = create_distance_matrix(graph, poi_nodes)
    return data
Example #6
0
def custom_dijkstra(src_graph_fp, results_folder, origin_node, dest_node):
    graph = net_ops.load_graph_from_disk(src_graph_fp)
    nodes, edges = net_ops.get_nodes_edges(graph)
    dijkstra_edges = min_ops.create_dijkstra_edge_list(edges, nodes)
    dijkstra_path = dijkstra.dijkstra(dijkstra_edges, origin_node, dest_node)

    dist, dijkstra_node_list = min_ops.refine_dijkstra_results(dijkstra_path)
    dijkstra_nodes_df = min_ops.get_dijkstra_matching_df(nodes,
                                                         dijkstra_node_list,
                                                         id='osmid')
    # write results to files
    dijkstra_edges_df = min_ops.get_dijkstra_matching_df(edges,
                                                         dijkstra_node_list,
                                                         id='u')
    write_results_to_disk(results_folder, origin_node, dest_node,
                          dijkstra_nodes_df, dijkstra_edges_df)
Example #7
0
def supermarkets_vrp_google_scenario(athens_network_path, supermarkets_path,
                                     results_path):
    # load athens network path and get nodes and edges
    graph = net_ops.load_graph_from_disk(athens_network_path)
    # get and update athens nodes with supermarket field
    nodes, edges = net_ops.get_nodes_edges(graph)
    nodes['supermarket'] = 'None'
    # load supermarkets path
    supermarkets = gpd.read_file(supermarkets_path)
    # project supermarkets nodes in athens network
    ###### HERE works net_sm_nodes = net_ops.get_matched_node_ids(supermarkets, graph)
    net_nodes = net_ops.populate_net_nodes_with_sm_nodes(
        graph, nodes, supermarkets)
    sm_nodes = net_nodes[net_nodes['supermarket_id'] != 0]
    #sm_nodes = sm_nodes[1:60]
    dist_matrix = net_ops.create_adj_matrix_of_supermarkets(sm_nodes, graph)
    return dist_matrix
Example #8
0
def k_best_scenario(src_graph_fp, results_csv_fpath, node, k_nodes=[]):
    """ Method to run a k-best scenario with mandatory "passing"
    through every one of the k_nodes. If no k_nodes list is given then
    a simple dijkstra is executed (k=1).
    
    :param:
    """
    # load network
    graph = net_ops.load_graph_from_disk(src_graph_fp)
    nodes, edges = net_ops.get_nodes_edges(graph)
    dijkstra_edges = min_ops.create_dijkstra_edge_list(edges, nodes)
    # initialize the k_best parameters
    k_res = []
    k_nodes = [3744263637, 300972555, 295512257, 1604968703]
    min_ops.k_best(dijkstra_edges, k_nodes, '', '', k_res)
    dist, k_best_list = min_ops.refine_k_best_results(k_res)
    pdb.set_trace()
Example #9
0
def scenario_all_in_all(src_graph_fp, csv_src_fp, results_csv_fpath, node):
    # read the csv file and get the list of nodes
    df = pandas.read_csv(csv_src_fp, sep=';')
    nodes_list = df[node].to_list()
    combo_list = net_ops.get_all_list_combinations(nodes_list)

    # get the network graph
    #cf = '["highway"~"motorway|motorway_link|trunk|secondary|primary"]'
    #graph = net_ops.get_network_graph('Greece', 'drive', cf)
    graph = net_ops.load_graph_from_disk(src_graph_fp)
    nodes, edges = net_ops.get_nodes_edges(graph)
    scenario_all_nodes_with_all(combo_list, graph, edges, 'traffic',
                                results_csv_fpath)
    write_traffic_edges_to_csv(edges,
                               results_csv_fpath,
                               new_col='traffic',
                               threshold=0.1)
Example #10
0
def od_viewer_to_map(csv_file, graph_file, lonlat_centres_file):
    """Method to view data of an OD-Matrix to a map.

    Args:
        csv_file ([type]): [description]
        graph_file ([type]): [description]
    """
    # load graph and data with loads for cities from csv_file
    df = read_data_from_file(csv_file, ',')
    net_graph = net_ops.load_graph_from_disk(graph_file)
    nodes, edges = net_ops.get_nodes_edges(net_graph)
    # assign cities to graph nodes
    reg_units_df = read_data_from_file(lonlat_centres_file, ',')
    node_id_list = _assign_net_node_to_reg_unit(reg_units_df, net_graph)
    # replace names of regional units with node ids.
    df = _replace_od_columns_with_node_ids(df, reg_units_df)
    # compute min path between cities in the network
    #nodes_pairs_list = create_nodes_pairs(node_id_list)
    nodes_pairs_list = extract_node_pairs_from_od(df)
    # load edges of network with the corresponding loads
    _update_edges_with_loads(net_graph, edges, nodes_pairs_list)
    # return loaded edges
    edges.to_csv('~/Downloads/updated_edges.csv')
Example #11
0
def tatiana_scenario(src_graph_fp,
                     csv_src_fp,
                     results_csv_fpath,
                     new_col='traffic'):
    # get the graph from disk
    graph = net_ops.load_graph_from_disk(src_graph_fp)
    nodes, edges = net_ops.get_nodes_edges(graph)
    # read the csv file (form: n1, n2, n3, ...n)
    # create pairs from csv file
    pairs = io_ops.get_u_v_pairs_from_file(csv_src_fp)
    # compute minimum paths and update traffic
    net_ops.add_new_column_to_dataframe(edges, new_col)
    for pair in pairs:
        u, v, traffic = pair
        if u is not v:
            update_edges_list_with_min_path_traffic(graph, edges, u, v,
                                                    new_col, traffic)
    pdb.set_trace()
    #net_ops.add_u_v_coords_to_edges(nodes, edges)
    write_traffic_edges_to_csv(edges,
                               results_csv_fpath,
                               new_col,
                               threshold=0.1)
    pdb.set_trace()