def save_bottleneck_features(self, train_data_dir, val_data_dir, batch_size): train_generator = util.get_generator(train_data_dir, self.img_width, self.img_height, batch_size) val_generator = util.get_generator(val_data_dir, self.img_width, self.img_height, batch_size) model = self.get_base_model() util.save_model_plot(self.base_model_plot_path, model) train_bottleneck_features = model.predict_generator( train_generator, len(train_generator.filenames) // batch_size) util.save_bottleneck_features(self.train_bottleneck_features_path, train_bottleneck_features) val_bottleneck_features = model.predict_generator( val_generator, len(val_generator.filenames) // batch_size) util.save_bottleneck_features(self.val_bottleneck_features_path, val_bottleneck_features)
def get_wrong_predictions(self, directory, batch_size=defaults['batch_size']): validation_data = util.load_bottleneck_features( self.val_bottleneck_features_path) val_generator = util.get_generator(directory, self.img_width, self.img_height, batch_size) train_labels = val_generator.classes top_model = load_model(self.model_path) return np.nonzero( top_model.predict_classes(validation_data).reshape(( -1, )) != train_labels)
def train_top_model(self, train_data_dir, val_data_dir, epochs=defaults['epochs'], batch_size=defaults['batch_size']): train_generator = util.get_generator(train_data_dir, self.img_width, self.img_height, batch_size) val_generator = util.get_generator(val_data_dir, self.img_width, self.img_height, batch_size) train_data = util.load_bottleneck_features( self.train_bottleneck_features_path) val_data = util.load_bottleneck_features( self.val_bottleneck_features_path) num_classes = train_generator.num_classes train_labels = train_generator.classes train_labels = to_categorical(train_labels, num_classes=num_classes) val_labels = val_generator.classes val_labels = to_categorical(val_labels, num_classes=num_classes) model = self.get_top_model(train_data.shape[1:], num_classes) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) util.save_model_plot(self.top_model_plot_path, model) history = model.fit(train_data, train_labels, epochs=epochs, batch_size=batch_size, validation_data=(val_data, val_labels)) model.save(self.model_path) util.save_history(self.history_path, history) util.eval_model_loss_acc(model, val_data, val_labels, batch_size)
def get_wrong_predictions(self, directory, batch_size=defaults['batch_size']): generator = util.get_generator(directory, self.img_width, self.img_height, batch_size) true_labels = generator.classes model = self.get_trained_model() predictions = model.predict_generator(generator) pred_labels = np.argmax(predictions, axis=-1) wrong_pred = [] for true_label, pred_label, index in zip(true_labels, pred_labels, range(0, len(true_labels))): if true_label != pred_label: wrong_pred.append((index, true_label, pred_label)) return wrong_pred
def evaluate(self, data_dir, batch_size=defaults['batch_size']): test_generator = util.get_generator(data_dir, self.img_width, self.img_height, batch_size) base_model = self.get_base_model() test_bottleneck_features = base_model.predict_generator( test_generator, len(test_generator.filenames) // batch_size) num_classes = test_generator.num_classes test_labels = test_generator.classes test_labels = to_categorical(test_labels, num_classes=num_classes) top_model = load_model(self.model_path) test_loss, test_acc = top_model.evaluate(test_bottleneck_features, test_labels, batch_size=batch_size) print('Test accuracy: ', test_acc) print('Test loss: ', test_loss)