def main(): cfg = TrainConfig().parse() print(cfg.name) result_dir = os.path.join( cfg.result_root, cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')) if not os.path.isdir(result_dir): os.makedirs(result_dir) utils.write_configure_to_file(cfg, result_dir) np.random.seed(seed=cfg.seed) # prepare dataset train_session = cfg.train_session train_set = prepare_multimodal_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root) if cfg.task == "supervised": # fully supervised task train_set = train_set[:cfg.label_num] batch_per_epoch = len(train_set) // cfg.sess_per_batch labeled_session = train_session[:cfg.label_num] val_session = cfg.val_session val_set = prepare_multimodal_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) global_step = tf.Variable(0, trainable=False) lr_ph = tf.placeholder(tf.float32, name='learning_rate') ####################### Load models here ######################## sensors_emb_dim = 32 segment_emb_dim = 32 with tf.variable_scope("modality_core"): # load backbone model if cfg.network == "convtsn": model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convbirtsn": model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError input_ph = tf.placeholder( tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) # for lstm has variable scope with tf.variable_scope("modality_sensors"): model_emb_sensors = networks.RTSN(n_seg=cfg.num_seg, emb_dim=sensors_emb_dim) model_pairsim_sensors = networks.PDDM(n_input=sensors_emb_dim) input_sensors_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 8]) model_emb_sensors.forward(input_sensors_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_sensors"): var_list[v.op.name.replace("modality_sensors/", "")] = v restore_saver_sensors = tf.train.Saver(var_list) with tf.variable_scope("modality_segment"): model_emb_segment = networks.RTSN(n_seg=cfg.num_seg, emb_dim=segment_emb_dim, n_input=357) model_pairsim_segment = networks.PDDM(n_input=segment_emb_dim) input_segment_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 357]) model_emb_segment.forward(input_segment_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_segment"): var_list[v.op.name.replace("modality_segment/", "")] = v restore_saver_segment = tf.train.Saver(var_list) ############################# Forward Pass ############################# # Core branch if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10) else: embedding = model_emb.hidden # get the number of multimodal triplets (x3) mul_num_ph = tf.placeholder(tf.int32, shape=[]) margins_ph = tf.placeholder(tf.float32, shape=[None]) struct_num = tf.shape(margins_ph)[0] * 3 # variable for visualizing the embeddings emb_var = tf.Variable([0.0], name='embeddings') set_emb = tf.assign(emb_var, embedding, validate_shape=False) # calculated for monitoring all-pair embedding distance diffs = utils.all_diffs_tf(embedding, embedding) all_dist = utils.cdist_tf(diffs) tf.summary.histogram('embedding_dists', all_dist) # split embedding into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack( tf.reshape(embedding[:(tf.shape(embedding)[0] - mul_num_ph)], [-1, 3, cfg.emb_dim]), 3, 1) anchor_hard, positive_hard, negative_hard = tf.unstack( tf.reshape(embedding[-mul_num_ph:-struct_num], [-1, 3, cfg.emb_dim]), 3, 1) anchor_struct, positive_struct, negative_struct = tf.unstack( tf.reshape(embedding[-struct_num:], [-1, 3, cfg.emb_dim]), 3, 1) # Sensors branch emb_sensors = model_emb_sensors.hidden A_sensors, B_sensors, C_sensors = tf.unstack( tf.reshape(emb_sensors, [-1, 3, sensors_emb_dim]), 3, 1) model_pairsim_sensors.forward(tf.stack([A_sensors, B_sensors], axis=1)) pddm_AB_sensors = model_pairsim_sensors.prob[:, 1] model_pairsim_sensors.forward(tf.stack([A_sensors, C_sensors], axis=1)) pddm_AC_sensors = model_pairsim_sensors.prob[:, 1] # Segment branch emb_segment = model_emb_segment.hidden A_segment, B_segment, C_segment = tf.unstack( tf.reshape(emb_segment, [-1, 3, segment_emb_dim]), 3, 1) model_pairsim_segment.forward(tf.stack([A_segment, B_segment], axis=1)) pddm_AB_segment = model_pairsim_segment.prob[:, 1] model_pairsim_segment.forward(tf.stack([A_segment, C_segment], axis=1)) pddm_AC_segment = model_pairsim_segment.prob[:, 1] # fuse prob from all modalities prob_AB = 0.5 * (pddm_AB_sensors + pddm_AB_segment) prob_AC = 0.5 * (pddm_AC_sensors + pddm_AC_segment) ############################# Calculate loss ############################# # triplet loss for labeled inputs metric_loss1 = networks.triplet_loss(anchor, positive, negative, cfg.alpha) # weighted triplet loss for multimodal inputs # if cfg.weighted: # metric_loss2, _ = networks.weighted_triplet_loss(anchor_hard, positive_hard, negative_hard, prob_AB, prob_AC, cfg.alpha) # else: # triplet loss for hard examples from multimodal data metric_loss2 = networks.triplet_loss(anchor_hard, positive_hard, negative_hard, cfg.alpha) # margin-based triplet loss for structure mining from multimodal data metric_loss3 = networks.triplet_loss(anchor_struct, positive_struct, negative_struct, margins_ph) # whether to apply joint optimization if cfg.no_joint: unimodal_var_list = [ v for v in tf.global_variables() if v.op.name.startswith("modality_core") ] train_var_list = unimodal_var_list else: multimodal_var_list = [ v for v in tf.global_variables() if not (v.op.name.startswith("modality_sensors/RTSN") or v.op.name.startswith("modality_segment/RTSN")) ] train_var_list = multimodal_var_list regularization_loss = tf.reduce_sum( tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) total_loss = tf.cond( tf.greater(mul_num_ph, 0), lambda: tf.cond( tf.equal(mul_num_ph, tf.shape(embedding)[0]), lambda: (metric_loss2 + metric_loss3 * 0.3) * cfg.lambda_multimodal + regularization_loss * cfg.lambda_l2, lambda: metric_loss1 + (metric_loss2 + metric_loss3 * 0.3) * cfg.lambda_multimodal + regularization_loss * cfg.lambda_l2), lambda: metric_loss1 + regularization_loss * cfg.lambda_l2) tf.summary.scalar('learning_rate', lr_ph) train_op = utils.optimize(total_loss, global_step, cfg.optimizer, lr_ph, train_var_list) saver = tf.train.Saver(max_to_keep=10) summary_op = tf.summary.merge_all( ) # not logging histogram of variables because it will cause problem when only unimodal_train_op is called summ_prob_AB = tf.summary.histogram('Prob_AB_histogram', prob_AB) summ_prob_AC = tf.summary.histogram('Prob_AC_histogram', prob_AC) # summ_weights = tf.summary.histogram('Weights_histogram', weights) ######################################################################### # session iterator for session sampling feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat2_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat3_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) train_data = multimodal_session_generator( feat_paths_ph, feat2_paths_ph, feat3_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=[ model_emb.prepare_input, model_emb_sensors.prepare_input, model_emb_segment.prepare_input ]) train_sess_iterator = train_data.make_initializable_iterator() next_train = train_sess_iterator.get_next() # prepare validation data val_sess = [] val_feats = [] val_feats2 = [] val_feats3 = [] val_labels = [] val_boundaries = [] for session in val_set: session_id = os.path.basename(session[1]).split('_')[0] eve_batch, lab_batch, boundary = load_data_and_label( session[0], session[-1], model_emb.prepare_input_test ) # use prepare_input_test for testing time val_feats.append(eve_batch) val_labels.append(lab_batch) val_sess.extend([session_id] * eve_batch.shape[0]) val_boundaries.extend(boundary) eve2_batch, _, _ = load_data_and_label( session[1], session[-1], model_emb_sensors.prepare_input_test) val_feats2.append(eve2_batch) eve3_batch, _, _ = load_data_and_label( session[2], session[-1], model_emb_segment.prepare_input_test) val_feats3.append(eve3_batch) val_feats = np.concatenate(val_feats, axis=0) val_feats2 = np.concatenate(val_feats2, axis=0) val_feats3 = np.concatenate(val_feats3, axis=0) val_labels = np.concatenate(val_labels, axis=0) print("Shape of val_feats: ", val_feats.shape) # generate metadata.tsv for visualize embedding with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout: fout.write('id\tlabel\tsession_id\tstart\tend\n') for i in range(len(val_sess)): fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format( i, val_labels[i, 0], val_sess[i], val_boundaries[i][0], val_boundaries[i][1])) ######################################################################### # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) summary_writer = tf.summary.FileWriter(result_dir, sess.graph) with sess.as_default(): sess.run(tf.global_variables_initializer()) # load pretrain model, if needed if cfg.model_path: print("Restoring pretrained model: %s" % cfg.model_path) saver.restore(sess, cfg.model_path) print("Restoring sensors model: %s" % cfg.sensors_path) restore_saver_sensors.restore(sess, cfg.sensors_path) print("Restoring segment model: %s" % cfg.segment_path) restore_saver_segment.restore(sess, cfg.segment_path) ################## Training loop ################## # Initialize pairwise embedding distance for each class on validation set val_embeddings, _ = sess.run([embedding, set_emb], feed_dict={ input_ph: val_feats, dropout_ph: 1.0 }) dist_dict = {} for i in range(np.max(val_labels) + 1): temp_emb = val_embeddings[np.where(val_labels == i)[0]] dist_dict[i] = [ np.mean( utils.cdist(utils.all_diffs(temp_emb, temp_emb), metric=cfg.metric)) ] epoch = -1 while epoch < cfg.max_epochs - 1: step = sess.run(global_step, feed_dict=None) epoch = step // batch_per_epoch # learning rate schedule, reference: "In defense of Triplet Loss" if epoch < cfg.static_epochs: learning_rate = cfg.learning_rate else: learning_rate = cfg.learning_rate * \ 0.01**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs)) # prepare data for this epoch random.shuffle(train_set) paths = list(zip(*[iter(train_set)] * cfg.sess_per_batch)) feat_paths = [[p[0] for p in path] for path in paths] feat2_paths = [[p[1] for p in path] for path in paths] feat3_paths = [[p[2] for p in path] for path in paths] label_paths = [[p[-1] for p in path] for path in paths] sess.run(train_sess_iterator.initializer, feed_dict={ feat_paths_ph: feat_paths, feat2_paths_ph: feat2_paths, feat3_paths_ph: feat3_paths, label_paths_ph: label_paths }) # for each epoch batch_count = 1 while True: try: ##################### Data loading ######################## start_time = time.time() eve, eve_sensors, eve_segment, lab, batch_sess = sess.run( next_train) # for memory concern, 1000 events are used in maximum if eve.shape[0] > cfg.event_per_batch: idx = np.random.permutation( eve.shape[0])[:cfg.event_per_batch] eve = eve[idx] eve_sensors = eve_sensors[idx] eve_segment = eve_segment[idx] lab = lab[idx] batch_sess = batch_sess[idx] load_time = time.time() - start_time ##################### Triplet selection ##################### start_time = time.time() # Get the embeddings of all events eve_embedding = np.zeros((eve.shape[0], cfg.emb_dim), dtype='float32') for start, end in zip( range(0, eve.shape[0], cfg.batch_size), range(cfg.batch_size, eve.shape[0] + cfg.batch_size, cfg.batch_size)): end = min(end, eve.shape[0]) emb = sess.run(embedding, feed_dict={ input_ph: eve[start:end], dropout_ph: 1.0 }) eve_embedding[start:end] = np.copy(emb) # sample triplets within sampled sessions all_diff = utils.all_diffs(eve_embedding, eve_embedding) triplet_selected, active_count = utils.select_triplets_facenet( lab, utils.cdist(all_diff, metric=cfg.metric), cfg.triplet_per_batch, cfg.alpha) hard_count = 0 struct_count = 0 if epoch >= cfg.multimodal_epochs: # Get the similarity of all events sim_prob = np.zeros((eve.shape[0], eve.shape[0]), dtype='float32') * np.nan comb = list( itertools.combinations(range(eve.shape[0]), 2)) for start, end in zip( range(0, len(comb), cfg.batch_size), range(cfg.batch_size, len(comb) + cfg.batch_size, cfg.batch_size)): end = min(end, len(comb)) comb_idx = [] for c in comb[start:end]: comb_idx.extend([c[0], c[1], c[1]]) sim = sess.run(prob_AB, feed_dict={ input_sensors_ph: eve_sensors[comb_idx], input_segment_ph: eve_segment[comb_idx], dropout_ph: 1.0 }) for i in range(sim.shape[0]): sim_prob[comb[start + i][0], comb[start + i][1]] = sim[i] sim_prob[comb[start + i][1], comb[start + i][0]] = sim[i] # sample triplets from similarity prediction # maximum number not exceed the cfg.triplet_per_batch triplet_input_idx, margins, triplet_count, hard_count, struct_count = select_triplets_mul( triplet_selected, lab, sim_prob, dist_dict, cfg.triplet_per_batch, 3, 0.8, 0.2) # add up all multimodal triplets multimodal_count = hard_count + struct_count sensors_input = eve_sensors[ triplet_input_idx[-(3 * multimodal_count):]] segment_input = eve_segment[ triplet_input_idx[-(3 * multimodal_count):]] print(triplet_count, hard_count, struct_count) triplet_input = eve[triplet_input_idx] select_time = time.time() - start_time if len(triplet_input.shape) > 5: # debugging pdb.set_trace() ##################### Start training ######################## # supervised initialization if multimodal_count == 0: if triplet_count == 0: continue err, metric_err1, _, step, summ = sess.run( [ total_loss, metric_loss1, train_op, global_step, summary_op ], feed_dict={ input_ph: triplet_input, dropout_ph: cfg.keep_prob, mul_num_ph: 0, lr_ph: learning_rate }) metric_err2 = 0 metric_err3 = 0 else: err, metric_err1, metric_err2, metric_err3, _, step, summ, s_AB, s_AC = sess.run( [ total_loss, metric_loss1, metric_loss2, metric_loss3, train_op, global_step, summary_op, summ_prob_AB, summ_prob_AC ], feed_dict={ input_ph: triplet_input, input_sensors_ph: sensors_input, input_segment_ph: segment_input, mul_num_ph: multimodal_count * 3, margins_ph: margins, dropout_ph: cfg.keep_prob, lr_ph: learning_rate }) summary_writer.add_summary(s_AB, step) summary_writer.add_summary(s_AC, step) print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tTriplet num: %d\tLoad time: %.3f\tSelect time: %.3f\tLoss %.4f" % \ (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], triplet_count+multimodal_count, load_time, select_time, err)) summary = tf.Summary(value=[ tf.Summary.Value(tag="train_loss", simple_value=err), tf.Summary.Value(tag="active_count", simple_value=active_count), tf.Summary.Value(tag="triplet_count", simple_value=triplet_count), tf.Summary.Value(tag="hard_count", simple_value=hard_count), tf.Summary.Value(tag="struct_count", simple_value=struct_count), tf.Summary.Value(tag="metric_loss1", simple_value=metric_err1), tf.Summary.Value(tag="metric_loss3", simple_value=metric_err3), tf.Summary.Value(tag="metric_loss2", simple_value=metric_err2) ]) summary_writer.add_summary(summary, step) summary_writer.add_summary(summ, step) batch_count += 1 except tf.errors.OutOfRangeError: print("Epoch %d done!" % (epoch + 1)) break # validation on val_set print("Evaluating on validation set...") val_embeddings, _ = sess.run([embedding, set_emb], feed_dict={ input_ph: val_feats, dropout_ph: 1.0 }) mAP, mPrec, recall = utils.evaluate_simple( val_embeddings, val_labels) summary = tf.Summary(value=[ tf.Summary.Value(tag="Valiation mAP", simple_value=mAP), tf.Summary.Value(tag="Validation Recall@1", simple_value=recall), tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec) ]) summary_writer.add_summary(summary, step) print("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" % (epoch + 1, mAP, mPrec)) # config for embedding visualization config = projector.ProjectorConfig() visual_embedding = config.embeddings.add() visual_embedding.tensor_name = emb_var.name visual_embedding.metadata_path = os.path.join( result_dir, 'metadata_val.tsv') projector.visualize_embeddings(summary_writer, config) # update dist_dict if (epoch + 1) == 50 or (epoch + 1) % 200 == 0: for i in dist_dict.keys(): temp_emb = val_embeddings[np.where(val_labels == i)[0]] dist_dict[i].append( np.mean( utils.cdist(utils.all_diffs( temp_emb, temp_emb), metric=cfg.metric))) pickle.dump( dist_dict, open(os.path.join(result_dir, 'dist_dict.pkl'), 'wb')) # save model saver.save(sess, os.path.join(result_dir, cfg.name + '.ckpt'), global_step=step)
def main(): cfg = TrainConfig().parse() print(cfg.name) result_dir = os.path.join( cfg.result_root, cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')) if not os.path.isdir(result_dir): os.makedirs(result_dir) utils.write_configure_to_file(cfg, result_dir) np.random.seed(seed=cfg.seed) # prepare dataset train_session = cfg.train_session train_set = prepare_multimodal_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root) if cfg.task == "supervised": # fully supervised task train_set = train_set[:cfg.label_num] batch_per_epoch = len(train_set) // cfg.sess_per_batch labeled_session = train_session[:cfg.label_num] val_session = cfg.val_session val_set = prepare_multimodal_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) global_step = tf.Variable(0, trainable=False) lr_ph = tf.placeholder(tf.float32, name='learning_rate') ####################### Load models here ######################## sensors_emb_dim = 32 segment_emb_dim = 32 with tf.variable_scope("modality_core"): # load backbone model if cfg.network == "convtsn": model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convbirtsn": model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError input_ph = tf.placeholder( tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) # for lstm has variable scope with tf.variable_scope("sensors"): model_output_sensors = networks.OutputLayer( n_input=cfg.emb_dim, n_output=sensors_emb_dim) with tf.variable_scope("segment"): model_output_segment = networks.OutputLayer( n_input=cfg.emb_dim, n_output=segment_emb_dim) lambda_mul_ph = tf.placeholder(tf.float32, shape=[]) with tf.variable_scope("modality_sensors"): model_emb_sensors = networks.RTSN(n_seg=cfg.num_seg, emb_dim=sensors_emb_dim) input_sensors_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 8]) model_emb_sensors.forward(input_sensors_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_sensors"): var_list[v.op.name.replace("modality_sensors/", "")] = v restore_saver_sensors = tf.train.Saver(var_list) with tf.variable_scope("modality_segment"): model_emb_segment = networks.RTSN(n_seg=cfg.num_seg, emb_dim=segment_emb_dim, n_input=357) input_segment_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 357]) model_emb_segment.forward(input_segment_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_segment"): var_list[v.op.name.replace("modality_segment/", "")] = v restore_saver_segment = tf.train.Saver(var_list) ############################# Forward Pass ############################# if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10) embedding_sensors = tf.nn.l2_normalize(model_emb_sensors.hidden, axis=-1, epsilon=1e-10) embedding_segment = tf.nn.l2_normalize(model_emb_segment.hidden, axis=-1, epsilon=1e-10) else: embedding = model_emb.hidden embedding_sensors = model_emb_sensors.hidden embedding_segment = model_emb_segment.hidden # get the number of unsupervised training unsup_num = tf.shape(input_sensors_ph)[0] # variable for visualizing the embeddings emb_var = tf.Variable(tf.zeros([1116, cfg.emb_dim], dtype=tf.float32), name='embeddings') set_emb = tf.assign(emb_var, embedding, validate_shape=False) # calculated for monitoring all-pair embedding distance diffs = utils.all_diffs_tf(embedding, embedding) all_dist = utils.cdist_tf(diffs) tf.summary.histogram('embedding_dists', all_dist) # split embedding into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack( tf.reshape(embedding[:-unsup_num], [-1, 3, cfg.emb_dim]), 3, 1) metric_loss = networks.triplet_loss(anchor, positive, negative, cfg.alpha) model_output_sensors.forward(tf.nn.relu(embedding[-unsup_num:]), dropout_ph) logits_sensors = model_output_sensors.logits model_output_segment.forward(tf.nn.relu(embedding[-unsup_num:]), dropout_ph) logits_segment = model_output_segment.logits # MSE loss MSE_loss_sensors = tf.losses.mean_squared_error( embedding_sensors, logits_sensors) / sensors_emb_dim MSE_loss_segment = tf.losses.mean_squared_error( embedding_sensors, logits_segment) / segment_emb_dim MSE_loss = MSE_loss_sensors + MSE_loss_segment regularization_loss = tf.reduce_sum( tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) total_loss = tf.cond( tf.equal(unsup_num, tf.shape(embedding)[0]), lambda: MSE_loss * lambda_mul_ph + regularization_loss * cfg.lambda_l2, lambda: metric_loss + MSE_loss * lambda_mul_ph + regularization_loss * cfg.lambda_l2) tf.summary.scalar('learning_rate', lr_ph) # only train the core branch train_var_list = [ v for v in tf.global_variables() if v.op.name.startswith("modality_core") ] train_op = utils.optimize(total_loss, global_step, cfg.optimizer, lr_ph, train_var_list) saver = tf.train.Saver(max_to_keep=10) summary_op = tf.summary.merge_all() ######################################################################### # session iterator for session sampling feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat2_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat3_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) train_data = multimodal_session_generator( feat_paths_ph, feat2_paths_ph, feat3_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=[ model_emb.prepare_input, model_emb_sensors.prepare_input, model_emb_segment.prepare_input ]) train_sess_iterator = train_data.make_initializable_iterator() next_train = train_sess_iterator.get_next() # prepare validation data val_sess = [] val_feats = [] val_feats2 = [] val_feats3 = [] val_labels = [] val_boundaries = [] for session in val_set: session_id = os.path.basename(session[1]).split('_')[0] eve_batch, lab_batch, boundary = load_data_and_label( session[0], session[-1], model_emb.prepare_input_test ) # use prepare_input_test for testing time val_feats.append(eve_batch) val_labels.append(lab_batch) val_sess.extend([session_id] * eve_batch.shape[0]) val_boundaries.extend(boundary) eve2_batch, _, _ = load_data_and_label( session[1], session[-1], model_emb_sensors.prepare_input_test) val_feats2.append(eve2_batch) eve3_batch, _, _ = load_data_and_label( session[2], session[-1], model_emb_segment.prepare_input_test) val_feats3.append(eve3_batch) val_feats = np.concatenate(val_feats, axis=0) val_feats2 = np.concatenate(val_feats2, axis=0) val_feats3 = np.concatenate(val_feats3, axis=0) val_labels = np.concatenate(val_labels, axis=0) print("Shape of val_feats: ", val_feats.shape) # generate metadata.tsv for visualize embedding with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout: fout.write('id\tlabel\tsession_id\tstart\tend\n') for i in range(len(val_sess)): fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format( i, val_labels[i, 0], val_sess[i], val_boundaries[i][0], val_boundaries[i][1])) ######################################################################### # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) summary_writer = tf.summary.FileWriter(result_dir, sess.graph) with sess.as_default(): sess.run(tf.global_variables_initializer()) print("Restoring sensors model: %s" % cfg.sensors_path) restore_saver_sensors.restore(sess, cfg.sensors_path) print("Restoring segment model: %s" % cfg.segment_path) restore_saver_segment.restore(sess, cfg.segment_path) # load pretrain model, if needed if cfg.model_path: print("Restoring pretrained model: %s" % cfg.model_path) saver.restore(sess, cfg.model_path) ################## Training loop ################## epoch = -1 while epoch < cfg.max_epochs - 1: step = sess.run(global_step, feed_dict=None) epoch = step // batch_per_epoch # learning rate schedule, reference: "In defense of Triplet Loss" if epoch < cfg.static_epochs: learning_rate = cfg.learning_rate else: learning_rate = cfg.learning_rate * \ 0.01**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs)) # prepare data for this epoch random.shuffle(train_set) paths = list(zip(*[iter(train_set)] * cfg.sess_per_batch)) feat_paths = [[p[0] for p in path] for path in paths] feat2_paths = [[p[1] for p in path] for path in paths] feat3_paths = [[p[2] for p in path] for path in paths] label_paths = [[p[-1] for p in path] for path in paths] sess.run(train_sess_iterator.initializer, feed_dict={ feat_paths_ph: feat_paths, feat2_paths_ph: feat2_paths, feat3_paths_ph: feat3_paths, label_paths_ph: label_paths }) # for each epoch batch_count = 1 while True: try: ##################### Data loading ######################## start_time = time.time() eve, eve_sensors, eve_segment, lab, batch_sess = sess.run( next_train) # for memory concern, 1000 events are used in maximum if eve.shape[0] > 1000: idx = np.random.permutation(eve.shape[0])[:1000] eve = eve[idx] eve_sensors = eve_sensors[idx] eve_segment = eve_segment[idx] lab = lab[idx] batch_sess = batch_sess[idx] load_time = time.time() - start_time ##################### Triplet selection ##################### start_time = time.time() # for labeled sessions, use facenet sampling eve_labeled = [] lab_labeled = [] for i in range(eve.shape[0]): # FIXME: use decode again to get session_id str if batch_sess[i, 0].decode() in labeled_session: eve_labeled.append(eve[i]) lab_labeled.append(lab[i]) if len(eve_labeled): # if labeled sessions exist eve_labeled = np.stack(eve_labeled, axis=0) lab_labeled = np.stack(lab_labeled, axis=0) # Get the embeddings of all events eve_embedding = np.zeros( (eve_labeled.shape[0], cfg.emb_dim), dtype='float32') for start, end in zip( range(0, eve_labeled.shape[0], cfg.batch_size), range( cfg.batch_size, eve_labeled.shape[0] + cfg.batch_size, cfg.batch_size)): end = min(end, eve_labeled.shape[0]) emb = sess.run(embedding, feed_dict={ input_ph: eve_labeled[start:end], dropout_ph: 1.0 }) eve_embedding[start:end] = np.copy(emb) # Second, sample triplets within sampled sessions all_diff = utils.all_diffs(eve_embedding, eve_embedding) triplet_input_idx, active_count = utils.select_triplets_facenet( lab_labeled, utils.cdist(all_diff, metric=cfg.metric), cfg.triplet_per_batch, cfg.alpha, num_negative=cfg.num_negative) if len(triplet_input_idx) == 0: triplet_input = eve_labeled[triplet_input_idx] else: active_count = -1 # for all sessions in the batch perm_idx = np.random.permutation(eve.shape[0]) perm_idx = perm_idx[:min(3 * (len(perm_idx) // 3), 3 * cfg.triplet_per_batch)] mul_input = eve[perm_idx] if len(eve_labeled) and triplet_input_idx is not None: triplet_input = np.concatenate( (triplet_input, mul_input), axis=0) else: triplet_input = mul_input sensors_input = eve_sensors[perm_idx] segment_input = eve_segment[perm_idx] ##################### Start training ######################## # supervised initialization if epoch < cfg.multimodal_epochs: if not len(eve_labeled ): # if no labeled sessions exist continue err, mse_err, _, step, summ = sess.run( [ total_loss, MSE_loss, train_op, global_step, summary_op ], feed_dict={ input_ph: triplet_input, input_sensors_ph: sensors_input, dropout_ph: cfg.keep_prob, lambda_mul_ph: 0.0, lr_ph: learning_rate }) else: print(triplet_input.shape) err, mse_err1, mse_err2, _, step, summ = sess.run( [ total_loss, MSE_loss_sensors, MSE_loss_segment, train_op, global_step, summary_op ], feed_dict={ input_ph: triplet_input, input_sensors_ph: sensors_input, input_segment_ph: segment_input, dropout_ph: cfg.keep_prob, lambda_mul_ph: cfg.lambda_multimodal, lr_ph: learning_rate }) train_time = time.time() - start_time print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tLoad time: %.3f\tTrain_time: %.3f\tLoss %.4f" % \ (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], load_time, train_time, err)) summary = tf.Summary(value=[ tf.Summary.Value(tag="train_loss", simple_value=err), tf.Summary.Value(tag="active_count", simple_value=active_count), tf.Summary.Value( tag="triplet_num", simple_value=(triplet_input.shape[0] - sensors_input.shape[0]) // 3), tf.Summary.Value(tag="MSE_loss_sensors", simple_value=mse_err1), tf.Summary.Value(tag="MSE_loss_segment", simple_value=mse_err2) ]) summary_writer.add_summary(summary, step) summary_writer.add_summary(summ, step) batch_count += 1 except tf.errors.OutOfRangeError: print("Epoch %d done!" % (epoch + 1)) break # validation on val_set print("Evaluating on validation set...") val_err1, val_err2, val_embeddings, _ = sess.run( [MSE_loss_sensors, MSE_loss_segment, embedding, set_emb], feed_dict={ input_ph: val_feats, input_sensors_ph: val_feats2, input_segment_ph: val_feats3, dropout_ph: 1.0 }) mAP, mPrec = utils.evaluate_simple(val_embeddings, val_labels) summary = tf.Summary(value=[ tf.Summary.Value(tag="Valiation mAP", simple_value=mAP), tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec), tf.Summary.Value(tag="Validation mse loss sensors", simple_value=val_err1), tf.Summary.Value(tag="Validation mse loss segment", simple_value=val_err2) ]) summary_writer.add_summary(summary, step) print("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" % (epoch + 1, mAP, mPrec)) # config for embedding visualization config = projector.ProjectorConfig() visual_embedding = config.embeddings.add() visual_embedding.tensor_name = emb_var.name visual_embedding.metadata_path = os.path.join( result_dir, 'metadata_val.tsv') projector.visualize_embeddings(summary_writer, config) # save model saver.save(sess, os.path.join(result_dir, cfg.name + '.ckpt'), global_step=step)
def main(): # Load configurations and write to config.txt cfg = TrainConfig().parse() print(cfg.name) result_dir = os.path.join( cfg.result_root, cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')) if not os.path.isdir(result_dir): os.makedirs(result_dir) utils.write_configure_to_file(cfg, result_dir) np.random.seed(seed=cfg.seed) # prepare dataset train_session = cfg.train_session train_set = prepare_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root) train_set = train_set[:cfg.label_num] batch_per_epoch = len(train_set) // cfg.sess_per_batch val_session = cfg.val_session val_set = prepare_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) global_step = tf.Variable(0, trainable=False) label_ph = tf.placeholder(tf.int32, shape=[None], name="label") lr_ph = tf.placeholder(tf.float32, name='learning_rate') ####################### Define model here ######################## # Load embedding model if cfg.network == "tsn": model_emb = networks.TSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "rtsn": model_emb = networks.RTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convtsn": model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim, n_h=cfg.n_h, n_w=cfg.n_w, n_C=cfg.n_C, n_input=cfg.n_input) elif cfg.network == "convbirtsn": model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError # get the embedding if cfg.feat == "sensors" or cfg.feat == "segment": input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None]) elif cfg.feat == "resnet" or cfg.feat == "segment_down": input_ph = tf.placeholder( tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10) else: embedding = model_emb.hidden # Use tensorflow implementation for loss functions if cfg.loss == 'triplet': metric_loss, active_count = loss_tf.triplet_semihard_loss( labels=label_ph, embeddings=embedding, margin=cfg.alpha) elif cfg.loss == 'lifted': metric_loss, active_count = loss_tf.lifted_struct_loss( labels=label_ph, embeddings=embedding, margin=cfg.alpha) else: raise NotImplementedError regularization_loss = tf.reduce_sum( tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) total_loss = metric_loss + regularization_loss * cfg.lambda_l2 tf.summary.scalar('learning_rate', lr_ph) train_op = utils.optimize(total_loss, global_step, cfg.optimizer, lr_ph, tf.global_variables()) ####################### Define data loader ############################ # session iterator for session sampling feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) train_data = session_generator(feat_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=model_emb.prepare_input) train_sess_iterator = train_data.make_initializable_iterator() next_train = train_sess_iterator.get_next() # Prepare validation data val_sess = [] val_feats = [] val_labels = [] val_boundaries = [] for session in val_set: session_id = os.path.basename(session[1]).split('_')[0] eve_batch, lab_batch, boundary = load_data_and_label( session[0], session[-1], model_emb.prepare_input_test ) # use prepare_input_test for testing time val_feats.append(eve_batch) val_labels.append(lab_batch) val_sess.extend([session_id] * eve_batch.shape[0]) val_boundaries.extend(boundary) val_feats = np.concatenate(val_feats, axis=0) val_labels = np.concatenate(val_labels, axis=0) print("Shape of val_feats: ", val_feats.shape) # generate metadata.tsv for visualize embedding with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout: fout.write('id\tlabel\tsession_id\tstart\tend\n') for i in range(len(val_sess)): fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format( i, val_labels[i, 0], val_sess[i], val_boundaries[i][0], val_boundaries[i][1])) # Variable for visualizing the embeddings emb_var = tf.Variable(tf.zeros([val_feats.shape[0], cfg.emb_dim]), name='embeddings') set_emb = tf.assign(emb_var, embedding, validate_shape=False) # calculated for monitoring all-pair embedding distance diffs = utils.all_diffs_tf(embedding, embedding) all_dist = utils.cdist_tf(diffs) tf.summary.histogram('embedding_dists', all_dist) summary_op = tf.summary.merge_all() saver = tf.train.Saver(max_to_keep=10) ######################################################################### # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) summary_writer = tf.summary.FileWriter(result_dir, sess.graph) with sess.as_default(): sess.run(tf.global_variables_initializer()) # load pretrain model, if needed if cfg.model_path: print("Restoring pretrained model: %s" % cfg.model_path) saver.restore(sess, cfg.model_path) ################## Training loop ################## epoch = -1 while epoch < cfg.max_epochs - 1: step = sess.run(global_step, feed_dict=None) epoch = step // batch_per_epoch # learning rate schedule, reference: "In defense of Triplet Loss" if epoch < cfg.static_epochs: learning_rate = cfg.learning_rate else: learning_rate = cfg.learning_rate * \ 0.01**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs)) # prepare data for this epoch random.shuffle(train_set) feat_paths = [path[0] for path in train_set] label_paths = [path[1] for path in train_set] # reshape a list to list of list # interesting hacky code from: https://stackoverflow.com/questions/10124751/convert-a-flat-list-to-list-of-list-in-python feat_paths = list(zip(*[iter(feat_paths)] * cfg.sess_per_batch)) label_paths = list( zip(*[iter(label_paths)] * cfg.sess_per_batch)) sess.run(train_sess_iterator.initializer, feed_dict={ feat_paths_ph: feat_paths, label_paths_ph: label_paths }) # for each epoch batch_count = 1 while True: try: # Get a batch start_time_select = time.time() eve, se, lab = sess.run(next_train) # for memory concern, cfg.event_per_batch events are used in maximum if eve.shape[0] > cfg.event_per_batch: idx = np.random.permutation( eve.shape[0])[:cfg.event_per_batch] eve = eve[idx] se = se[idx] lab = lab[idx] select_time = time.time() - start_time_select start_time_train = time.time() # perform training on the batch err, _, step, summ = sess.run( [total_loss, train_op, global_step, summary_op], feed_dict={ input_ph: eve, label_ph: np.squeeze(lab), dropout_ph: cfg.keep_prob, lr_ph: learning_rate }) train_time = time.time() - start_time_train print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tSelect_time: %.3f\tTrain_time: %.3f\tLoss %.4f" % \ (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], select_time, train_time, err)) summary = tf.Summary(value=[ tf.Summary.Value(tag="train_loss", simple_value=err), ]) summary_writer.add_summary(summary, step) summary_writer.add_summary(summ, step) batch_count += 1 except tf.errors.OutOfRangeError: print("Epoch %d done!" % (epoch + 1)) break # validation on val_set print("Evaluating on validation set...") val_embeddings, _ = sess.run([embedding, set_emb], feed_dict={ input_ph: val_feats, dropout_ph: 1.0 }) mAP, mPrec, recall = utils.evaluate_simple( val_embeddings, val_labels) summary = tf.Summary(value=[ tf.Summary.Value(tag="Valiation mAP", simple_value=mAP), tf.Summary.Value(tag="Validation Recall@1", simple_value=recall), tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec) ]) summary_writer.add_summary(summary, step) print("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" % (epoch + 1, mAP, mPrec)) # config for embedding visualization config = projector.ProjectorConfig() visual_embedding = config.embeddings.add() visual_embedding.tensor_name = emb_var.name visual_embedding.metadata_path = os.path.join( result_dir, 'metadata_val.tsv') projector.visualize_embeddings(summary_writer, config) # save model saver.save(sess, os.path.join(result_dir, cfg.name + '.ckpt'), global_step=step)
def main(): cfg = TrainConfig().parse() print(cfg.name) result_dir = os.path.join( cfg.result_root, cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')) if not os.path.isdir(result_dir): os.makedirs(result_dir) utils.write_configure_to_file(cfg, result_dir) np.random.seed(seed=cfg.seed) # prepare dataset train_session = cfg.train_session train_set = prepare_multimodal_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root) batch_per_epoch = len(train_set) // cfg.sess_per_batch val_session = cfg.val_session val_set = prepare_multimodal_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) global_step = tf.Variable(0, trainable=False) lr_ph = tf.placeholder(tf.float32, name='learning_rate') ####################### Load models here ######################## with tf.variable_scope("modality_core"): # load backbone model if cfg.network == "convtsn": model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convbirtsn": model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError input_ph = tf.placeholder( tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) # for lstm has variable scope with tf.variable_scope("modality_sensors"): sensors_emb_dim = 32 model_emb_sensors = networks.RTSN(n_seg=cfg.num_seg, emb_dim=sensors_emb_dim) model_pairsim_sensors = networks.PairSim(n_input=sensors_emb_dim) input_sensors_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 8]) model_emb_sensors.forward(input_sensors_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_sensors"): var_list[v.op.name.replace("modality_sensors/", "")] = v restore_saver_sensors = tf.train.Saver(var_list) ############################# Forward Pass ############################# # Core branch if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10) else: embedding = model_emb.hidden # variable for visualizing the embeddings emb_var = tf.Variable([0.0], name='embeddings') set_emb = tf.assign(emb_var, embedding, validate_shape=False) # calculated for monitoring all-pair embedding distance diffs = utils.all_diffs_tf(embedding, embedding) all_dist = utils.cdist_tf(diffs) tf.summary.histogram('embedding_dists', all_dist) # split embedding into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack( tf.reshape(embedding, [-1, 3, cfg.emb_dim]), 3, 1) # Sensors branch emb_sensors = model_emb_sensors.hidden A_sensors, B_sensors, C_sensors = tf.unstack( tf.reshape(emb_sensors, [-1, 3, sensors_emb_dim]), 3, 1) AB_pairs_sensors = tf.stack([A_sensors, B_sensors], axis=1) AC_pairs_sensors = tf.stack([A_sensors, C_sensors], axis=1) pairs_sensors = tf.concat([AB_pairs_sensors, AC_pairs_sensors], axis=0) model_pairsim_sensors.forward(pairs_sensors, dropout_ph) prob_sensors = model_pairsim_sensors.prob prob_sensors = tf.concat([ prob_sensors[:tf.shape(A_sensors)[0]], prob_sensors[tf.shape(A_sensors)[0]:] ], axis=1) # shape: [N, 4] # fuse prob from all modalities prob = prob_sensors ############################# Calculate loss ############################# # triplet loss for labeled inputs metric_loss1 = networks.triplet_loss(anchor, positive, negative, cfg.alpha) # weighted triplet loss for multimodal inputs mul_num = tf.shape(prob)[0] metric_loss2 = networks.triplet_loss(anchor[:mul_num], positive[:mul_num], negative[:mul_num], cfg.alpha) weighted_metric_loss, weights = networks.weighted_triplet_loss( anchor[-mul_num:], positive[-mul_num:], negative[-mul_num:], prob[:, 1], prob[:, 3], cfg.alpha) unimodal_var_list = [ v for v in tf.global_variables() if v.op.name.startswith("modality_core") ] # whether to apply joint optimization if cfg.no_joint: multimodal_var_list = unimodal_var_list else: multimodal_var_list = tf.global_variables() regularization_loss = tf.reduce_sum( tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) unimodal_loss = metric_loss1 + regularization_loss * cfg.lambda_l2 multimodal_loss = metric_loss2 + cfg.lambda_multimodal * weighted_metric_loss + regularization_loss * cfg.lambda_l2 tf.summary.scalar('learning_rate', lr_ph) unimodal_train_op = utils.optimize(unimodal_loss, global_step, cfg.optimizer, lr_ph, unimodal_var_list) multimodal_train_op = utils.optimize(multimodal_loss, global_step, cfg.optimizer, lr_ph, multimodal_var_list) saver = tf.train.Saver(max_to_keep=10) summary_op = tf.summary.merge_all( ) # not logging histogram of variables because it will cause problem when only unimodal_train_op is called summ_prob = tf.summary.histogram('Prob_histogram', prob) summ_weights = tf.summary.histogram('Weights_histogram', weights) ######################################################################### # session iterator for session sampling feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat2_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) train_data = multimodal_session_generator( feat_paths_ph, feat2_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=[ model_emb.prepare_input, model_emb_sensors.prepare_input ]) train_sess_iterator = train_data.make_initializable_iterator() next_train = train_sess_iterator.get_next() # prepare validation data val_sess = [] val_feats = [] val_feats2 = [] val_labels = [] val_boundaries = [] for session in val_set: session_id = os.path.basename(session[1]).split('_')[0] eve_batch, lab_batch, boundary = load_data_and_label( session[0], session[-1], model_emb.prepare_input_test ) # use prepare_input_test for testing time val_feats.append(eve_batch) val_labels.append(lab_batch) val_sess.extend([session_id] * eve_batch.shape[0]) val_boundaries.extend(boundary) eve2_batch, _, _ = load_data_and_label(session[1], session[-1], utils.mean_pool_input) val_feats2.append(eve2_batch) val_feats = np.concatenate(val_feats, axis=0) val_feats2 = np.concatenate(val_feats2, axis=0) val_labels = np.concatenate(val_labels, axis=0) print("Shape of val_feats: ", val_feats.shape) # generate metadata.tsv for visualize embedding with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout: fout.write('id\tlabel\tsession_id\tstart\tend\n') for i in range(len(val_sess)): fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format( i, val_labels[i, 0], val_sess[i], val_boundaries[i][0], val_boundaries[i][1])) ######################################################################### # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) summary_writer = tf.summary.FileWriter(result_dir, sess.graph) with sess.as_default(): sess.run(tf.global_variables_initializer()) # load pretrain model, if needed if cfg.model_path: print("Restoring pretrained model: %s" % cfg.model_path) saver.restore(sess, cfg.model_path) #print ("Restoring sensors model: %s" % cfg.sensors_path) restore_saver_sensors.restore(sess, cfg.sensors_path) ################## Training loop ################## epoch = -1 while epoch < cfg.max_epochs - 1: step = sess.run(global_step, feed_dict=None) epoch = step // batch_per_epoch # learning rate schedule, reference: "In defense of Triplet Loss" if epoch < cfg.static_epochs: learning_rate = cfg.learning_rate else: learning_rate = cfg.learning_rate * \ 0.001**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs)) # prepare data for this epoch random.shuffle(train_set) paths = list(zip(*[iter(train_set)] * cfg.sess_per_batch)) feat_paths = [[p[0] for p in path] for path in paths] feat2_paths = [[p[1] for p in path] for path in paths] label_paths = [[p[-1] for p in path] for path in paths] sess.run(train_sess_iterator.initializer, feed_dict={ feat_paths_ph: feat_paths, feat2_paths_ph: feat2_paths, label_paths_ph: label_paths }) # for each epoch batch_count = 1 while True: try: ##################### Data loading ######################## start_time = time.time() eve, eve_sensors, lab = sess.run(next_train) load_time = time.time() - start_time ##################### Triplet selection ##################### start_time = time.time() # Get the embeddings of all events eve_embedding = np.zeros((eve.shape[0], cfg.emb_dim), dtype='float32') for start, end in zip( range(0, eve.shape[0], cfg.batch_size), range(cfg.batch_size, eve.shape[0] + cfg.batch_size, cfg.batch_size)): end = min(end, eve.shape[0]) emb = sess.run(embedding, feed_dict={ input_ph: eve[start:end], dropout_ph: 1.0 }) eve_embedding[start:end] = np.copy(emb) # sample triplets within sampled sessions triplet_input_idx, negative_count = utils.select_triplets_facenet( lab, eve_embedding, cfg.triplet_per_batch, cfg.alpha, num_negative=cfg.num_negative) if triplet_input_idx is None: continue multimodal_count = 0 if epoch >= cfg.multimodal_epochs: # Get the similairty prediction of all pos-neg pairs pos_neg_idx = pos_neg_pairs(lab) sim_prob = np.zeros((eve.shape[0], eve.shape[0]), dtype='float32') * np.nan for start, end in zip( range(0, len(pos_neg_idx), 3 * cfg.batch_size), range( 3 * cfg.batch_size, len(pos_neg_idx) + 3 * cfg.batch_size, 3 * cfg.batch_size)): ####### for debugging if pos_neg_idx is None: pdb.set_trace() end = min(end, len(pos_neg_idx)) batch_idx = pos_neg_idx[start:end] batch_prob, histo_prob = sess.run( [prob, summ_prob], feed_dict={ input_sensors_ph: eve_sensors[batch_idx], dropout_ph: 1.0 }) summary_writer.add_summary(histo_prob, step) for i in range(batch_prob.shape[0]): sim_prob[batch_idx[i * 3], batch_idx[i * 3 + 1]] = np.copy( batch_prob[i, 1]) # post-process the similarity prediction matrix [N,N] # average two predictions sim(A,B) and sim(B,A) # not implemented because of nan for backgrounds #sim_prob = 0.5 * (sim_prob + sim_prob.T) # sample triplets from similarity prediction # maximum number not exceed the number of triplet_input from facenet selection if cfg.multimodal_select == "confidence": multimodal_input_idx, multimodal_count = select_triplets_multimodal( sim_prob, threshold=0.9, max_num=len(triplet_input_idx) // 3) elif cfg.multimodal_select == "nopos": multimodal_input_idx, multimodal_count = nopos_triplets_multimodal( sim_prob, max_num=len(triplet_input_idx) // 3) elif cfg.multimodal_select == "random": multimodal_input_idx, multimodal_count = random_triplets_multimodal( sim_prob, max_num=len(triplet_input_idx) // 3) else: raise NotImplementedError print(len(triplet_input_idx), len(multimodal_input_idx), multimodal_count) sensors_input = eve_sensors[multimodal_input_idx] triplet_input_idx.extend(multimodal_input_idx) triplet_input = eve[triplet_input_idx] select_time = time.time() - start_time if len(triplet_input.shape) > 5: # debugging pdb.set_trace() ##################### Start training ######################## # be careful that for multimodal_count = 0 we just optimize unimodal part if epoch < cfg.multimodal_epochs or multimodal_count == 0: err, metric_err, _, step, summ = sess.run( [ unimodal_loss, metric_loss1, unimodal_train_op, global_step, summary_op ], feed_dict={ input_ph: triplet_input, dropout_ph: cfg.keep_prob, lr_ph: learning_rate }) mul_err = 0.0 else: err, w, metric_err, mul_err, _, step, summ, histo_w = sess.run( [ multimodal_loss, weights, metric_loss2, weighted_metric_loss, multimodal_train_op, global_step, summary_op, summ_weights ], feed_dict={ input_ph: triplet_input, input_sensors_ph: sensors_input, dropout_ph: cfg.keep_prob, lr_ph: learning_rate }) # add summary of weights histogram summary_writer.add_summary(histo_w, step) print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tTriplet num: %d\tLoad time: %.3f\tSelect time: %.3f\tLoss %.4f" % \ (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], triplet_input.shape[0]//3, load_time, select_time, err)) summary = tf.Summary(value=[ tf.Summary.Value(tag="train_loss", simple_value=err), tf.Summary.Value(tag="negative_count", simple_value=negative_count), tf.Summary.Value(tag="multimodal_count", simple_value=multimodal_count), tf.Summary.Value(tag="metric_loss", simple_value=metric_err), tf.Summary.Value(tag="weghted_metric_loss", simple_value=mul_err) ]) summary_writer.add_summary(summary, step) summary_writer.add_summary(summ, step) batch_count += 1 except tf.errors.OutOfRangeError: print("Epoch %d done!" % (epoch + 1)) break # validation on val_set print("Evaluating on validation set...") val_embeddings, _ = sess.run([embedding, set_emb], feed_dict={ input_ph: val_feats, dropout_ph: 1.0 }) mAP, mPrec = utils.evaluate_simple(val_embeddings, val_labels) summary = tf.Summary(value=[ tf.Summary.Value(tag="Valiation mAP", simple_value=mAP), tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec) ]) summary_writer.add_summary(summary, step) print("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" % (epoch + 1, mAP, mPrec)) # config for embedding visualization config = projector.ProjectorConfig() visual_embedding = config.embeddings.add() visual_embedding.tensor_name = emb_var.name visual_embedding.metadata_path = os.path.join( result_dir, 'metadata_val.tsv') projector.visualize_embeddings(summary_writer, config) # save model saver.save(sess, os.path.join(result_dir, cfg.name + '.ckpt'), global_step=step)
def main(): cfg = EvalConfig().parse() print ("Evaluate the model: {}".format(os.path.basename(cfg.model_path))) np.random.seed(seed=cfg.seed) test_session = cfg.test_session test_set = prepare_dataset(cfg.feature_root, test_session, cfg.feat, cfg.label_root, cfg.label_type) # load backbone model if cfg.network == "tsn": model = networks.TSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "rtsn": model = networks.RTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim, n_input=cfg.n_input) elif cfg.network == "convtsn": model = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim, n_h=cfg.n_h, n_w=cfg.n_w, n_C=cfg.n_C, n_input=cfg.n_input) elif cfg.network == "seq2seqtsn": model = networks.Seq2seqTSN(n_seg=cfg.num_seg, n_input=n_input, emb_dim=cfg.emb_dim, reverse=cfg.reverse) elif cfg.network == "convbirtsn": model = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError # get the embedding if cfg.feat == "sensors" or cfg.feat == "segment": input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None]) elif cfg.feat == "resnet" or cfg.feat == "segment_down": input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model.forward(input_ph, dropout_ph) embedding = tf.nn.l2_normalize(model.hidden, axis=1, epsilon=1e-10, name='embedding') # Testing if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # restore variables var_list = {} for v in tf.global_variables(): var_list[cfg.variable_name+v.op.name] = v saver = tf.train.Saver(var_list) with sess.as_default(): sess.run(tf.global_variables_initializer()) # load the model (note that model_path already contains snapshot number saver.restore(sess, cfg.model_path) duration = 0.0 eve_embeddings = [] labels = [] for i, session in enumerate(test_set): session_id = os.path.basename(session[1]).split('_')[0] print ("{0} / {1}: {2}".format(i, len(test_set), session_id)) # eve_batch, lab_batch, _ = load_data_and_label(session[0], session[1], mean_pool_input, transfer=cfg.transfer) # use prepare_input_test for testing time eve_batch, lab_batch, _ = load_data_and_label(session[0], session[1], model.prepare_input_test, transfer=cfg.transfer) # use prepare_input_test for testing time start_time = time.time() emb = sess.run(embedding, feed_dict={input_ph: eve_batch, dropout_ph: 1.0}) # emb = eve_batch duration += time.time() - start_time eve_embeddings.append(emb) labels.append(lab_batch) eve_embeddings = np.concatenate(eve_embeddings, axis=0) labels = np.concatenate(labels, axis=0) # evaluate the results mAP, mAP_event, mPrec, confusion, count, recall = evaluate(eve_embeddings, np.squeeze(labels)) mAP_macro = 0.0 for key in mAP_event: mAP_macro += mAP_event[key] mAP_macro /= len(list(mAP_event.keys())) print ("%d events with dim %d for evaluation, run time: %.3f." % (labels.shape[0], eve_embeddings.shape[1], duration)) print ("mAP = {:.4f}".format(mAP)) print ("mAP_macro = {:.4f}".format(mAP_macro)) print ("[email protected] = {:.4f}".format(mPrec)) print ("Recall@1 = {:.4f}".format(recall[0])) print ("Recall@2 = {:.4f}".format(recall[1])) print ("Recall@4 = {:.4f}".format(recall[2])) print ("Recall@8 = {:.4f}".format(recall[3])) print ("Recall@16 = {:.4f}".format(recall[4])) print ("Recall@32 = {:.4f}".format(recall[5])) if cfg.label_type == 'goal': num2labels = honda_num2labels elif cfg.label_type == 'stimuli': num2labels = stimuli_num2labels keys = confusion['labels'] for i, key in enumerate(keys): if key not in mAP_event: continue print ("Event {0}: {1}, ratio = {2:.4f}, mAP = {3:.4f}, [email protected] = {4:.4f}".format( key, num2labels[key], float(count[i]) / np.sum(count), mAP_event[key], confusion['confusion_matrix'][i, i])) # store results pkl.dump({"mAP": mAP, "mAP_macro": mAP_macro, "mAP_event": mAP_event, "mPrec": mPrec, "confusion": confusion, "count": count, "recall": recall}, open(os.path.join(os.path.dirname(cfg.model_path), "results.pkl"), 'wb'))
def main(): cfg = TrainConfig().parse() print (cfg.name) np.random.seed(seed=cfg.seed) # prepare dataset val_session = cfg.val_session val_set = prepare_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) # load backbone model if cfg.network == "tsn": model_emb = networks.TSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "rtsn": model_emb = networks.RTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim, n_input=cfg.n_input) elif cfg.network == "convtsn": model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim, n_h=cfg.n_h, n_w=cfg.n_w, n_C=cfg.n_C, n_input=cfg.n_input) elif cfg.network == "convbirtsn": model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError model_ver = networks.PDDM(n_input=cfg.emb_dim) # get the embedding if cfg.feat == "sensors" or cfg.feat == "segment": input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None]) elif cfg.feat == "resnet" or cfg.feat == "segment_down": input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10) else: embedding = model_emb.hidden # split the embedding emb_A = embedding[:(tf.shape(embedding)[0]//2)] emb_B = embedding[(tf.shape(embedding)[0]//2):] model_ver.forward(tf.stack((emb_A, emb_B), axis=1)) pddm = model_ver.prob restore_saver = tf.train.Saver() # prepare validation data val_sess = [] val_feats = [] val_labels = [] val_boundaries = [] for session in val_set: session_id = os.path.basename(session[1]).split('_')[0] eve_batch, lab_batch, boundary = load_data_and_label(session[0], session[-1], model_emb.prepare_input_test) # use prepare_input_test for testing time val_feats.append(eve_batch) val_labels.append(lab_batch) val_sess.extend([session_id]*eve_batch.shape[0]) val_boundaries.extend(boundary) val_feats = np.concatenate(val_feats, axis=0) val_labels = np.concatenate(val_labels, axis=0) print ("Shape of val_feats: ", val_feats.shape) # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) with sess.as_default(): sess.run(tf.global_variables_initializer()) print ("Restoring pretrained model: %s" % cfg.model_path) restore_saver.restore(sess, cfg.model_path) fout_fp = open(os.path.join(os.path.dirname(cfg.model_path), 'val_fp.txt'), 'w') fout_fn = open(os.path.join(os.path.dirname(cfg.model_path), 'val_fn.txt'), 'w') fout_fp.write('id_A\tid_B\tlabel_A\tlabel_B\tprob_0\tprob_1\n') fout_fn.write('id_A\tid_B\tlabel_A\tlabel_B\tprob_0\tprob_1\n') count = 0 count_high = 0 # high confidence (0.9) count_fp = 0 count_fn = 0 for i in range(val_feats.shape[0]): print ("%d/%d" % (i,val_feats.shape[0])) if val_labels[i] == 0: continue A_input = np.tile(val_feats[i], (val_feats.shape[0]-i,1,1)) AB_input = np.vstack((A_input, val_feats[i:])) # concatenate along axis 0 temp_prob = sess.run(pddm, feed_dict={input_ph: AB_input, dropout_ph:1.0}) count += temp_prob.shape[0] threshold = 0.8 for j in range(temp_prob.shape[0]): if temp_prob[j, 0] > threshold or temp_prob[j, 1] > threshold: count_high += 1 if val_labels[i] == val_labels[i+j] and temp_prob[j, 0]>threshold: count_fn += 1 fout_fn.write("{}\t{}\t{}\t{}\t{:.4f}\t{:.4f}\n".format(i,i+j,val_labels[i,0],val_labels[i+j,0],temp_prob[j,0],temp_prob[j,1])) elif val_labels[i] != val_labels[i+j] and temp_prob[j,1] > threshold: count_fp += 1 fout_fp.write("{}\t{}\t{}\t{}\t{:.4f}\t{:.4f}\n".format(i,i+j,val_labels[i,0],val_labels[i+j,0],temp_prob[j,0],temp_prob[j,1])) fout_fp.close() fout_fn.close() print ("High confidence (%f) pairs ratio: %.4f" % (threshold, float(count_high)/count)) print ("Consistent pairs ratio: %.4f" % (float(count_high-count_fp-count_fn)/count_high)) print ("False positive pairs ratio: %.4f" % (float(count_fp)/count_high)) print ("False negative pairs ratio: %.4f" % (float(count_fn)/count_high))
def main(): cfg = TrainConfig().parse() print(cfg.name) result_dir = os.path.join( cfg.result_root, cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')) if not os.path.isdir(result_dir): os.makedirs(result_dir) utils.write_configure_to_file(cfg, result_dir) np.random.seed(seed=cfg.seed) # prepare dataset train_session = cfg.train_session train_set = prepare_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root) train_set = train_set[:cfg.label_num] batch_per_epoch = len(train_set) // cfg.sess_per_batch val_session = cfg.val_session val_set = prepare_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) global_step = tf.Variable(0, trainable=False) lr_ph = tf.placeholder(tf.float32, name='learning_rate') # load backbone model if cfg.network == "tsn": model_emb = networks.TSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "rtsn": model_emb = networks.RTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim, n_input=cfg.n_input) elif cfg.network == "convtsn": model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim, n_h=cfg.n_h, n_w=cfg.n_w, n_C=cfg.n_C, n_input=cfg.n_input) elif cfg.network == "convbirtsn": model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError model_ver = networks.PDDM(n_input=cfg.emb_dim) # get the embedding if cfg.feat == "sensors" or cfg.feat == "segment": input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None]) elif cfg.feat == "resnet" or cfg.feat == "segment_down": input_ph = tf.placeholder( tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10) else: embedding = model_emb.hidden # variable for visualizing the embeddings emb_var = tf.Variable([0.0], name='embeddings') set_emb = tf.assign(emb_var, embedding, validate_shape=False) # calculated for monitoring all-pair embedding distance diffs = utils.all_diffs_tf(embedding, embedding) all_dist = utils.cdist_tf(diffs) tf.summary.histogram('embedding_dists', all_dist) # split embedding into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack( tf.reshape(embedding, [-1, 3, cfg.emb_dim]), 3, 1) metric_loss = networks.triplet_loss(anchor, positive, negative, cfg.alpha) model_ver.forward(tf.stack((anchor, positive), axis=1)) pddm_ap = model_ver.prob[:, 0] model_ver.forward(tf.stack((anchor, negative), axis=1)) pddm_an = model_ver.prob[:, 0] pddm_loss = tf.reduce_mean( tf.maximum(tf.add(tf.subtract(pddm_ap, pddm_an), 0.6), 0.0), 0) regularization_loss = tf.reduce_sum( tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) total_loss = pddm_loss + 0.5 * metric_loss + regularization_loss * cfg.lambda_l2 tf.summary.scalar('learning_rate', lr_ph) train_op = utils.optimize(total_loss, global_step, cfg.optimizer, lr_ph, tf.global_variables()) saver = tf.train.Saver(max_to_keep=10) summary_op = tf.summary.merge_all() # session iterator for session sampling feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) train_data = session_generator(feat_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=model_emb.prepare_input) train_sess_iterator = train_data.make_initializable_iterator() next_train = train_sess_iterator.get_next() # prepare validation data val_feats = [] val_labels = [] for session in val_set: eve_batch, lab_batch, _ = load_data_and_label( session[0], session[1], model_emb.prepare_input_test ) # use prepare_input_test for testing time val_feats.append(eve_batch) val_labels.append(lab_batch) val_feats = np.concatenate(val_feats, axis=0) val_labels = np.concatenate(val_labels, axis=0) print("Shape of val_feats: ", val_feats.shape) # generate metadata.tsv for visualize embedding with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout: for v in val_labels: fout.write('%d\n' % int(v)) # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) summary_writer = tf.summary.FileWriter(result_dir, sess.graph) with sess.as_default(): sess.run(tf.global_variables_initializer()) # load pretrain model, if needed if cfg.model_path: print("Restoring pretrained model: %s" % cfg.model_path) saver.restore(sess, cfg.model_path) ################## Training loop ################## epoch = -1 while epoch < cfg.max_epochs - 1: step = sess.run(global_step, feed_dict=None) epoch = step // batch_per_epoch # learning rate schedule, reference: "In defense of Triplet Loss" if epoch < cfg.static_epochs: learning_rate = cfg.learning_rate else: learning_rate = cfg.learning_rate * \ 0.001**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs)) # prepare data for this epoch random.shuffle(train_set) feat_paths = [path[0] for path in train_set] label_paths = [path[1] for path in train_set] # reshape a list to list of list # interesting hacky code from: https://stackoverflow.com/questions/10124751/convert-a-flat-list-to-list-of-list-in-python feat_paths = list(zip(*[iter(feat_paths)] * cfg.sess_per_batch)) label_paths = list( zip(*[iter(label_paths)] * cfg.sess_per_batch)) sess.run(train_sess_iterator.initializer, feed_dict={ feat_paths_ph: feat_paths, label_paths_ph: label_paths }) # for each epoch batch_count = 1 while True: try: # Hierarchical sampling (same as fast rcnn) start_time_select = time.time() # First, sample sessions for a batch eve, se, lab = sess.run(next_train) select_time1 = time.time() - start_time_select # Get the similarity of all events sim_prob = np.zeros((eve.shape[0], eve.shape[0]), dtype='float32') * np.nan comb = list( itertools.combinations(range(eve.shape[0]), 2)) for start, end in zip( range(0, len(comb), cfg.batch_size), range(cfg.batch_size, len(comb) + cfg.batch_size, cfg.batch_size)): end = min(end, len(comb)) comb_idx = [] for c in comb[start:end]: comb_idx.extend([c[0], c[1], c[1]]) emb = sess.run(pddm_ap, feed_dict={ input_ph: eve[comb_idx], dropout_ph: 1.0 }) for i in range(emb.shape[0]): sim_prob[comb[start + i][0], comb[start + i][1]] = emb[i] sim_prob[comb[start + i][1], comb[start + i][0]] = emb[i] # Second, sample triplets within sampled sessions triplet_selected, active_count = utils.select_triplets_facenet( lab, sim_prob, cfg.triplet_per_batch, cfg.alpha) select_time2 = time.time( ) - start_time_select - select_time1 start_time_train = time.time() triplet_input_idx = [ idx for triplet in triplet_selected for idx in triplet ] triplet_input = eve[triplet_input_idx] # perform training on the selected triplets err, _, step, summ = sess.run( [total_loss, train_op, global_step, summary_op], feed_dict={ input_ph: triplet_input, dropout_ph: cfg.keep_prob, lr_ph: learning_rate }) train_time = time.time() - start_time_train print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tTriplet num: %d\tSelect_time1: %.3f\tSelect_time2: %.3f\tTrain_time: %.3f\tLoss %.4f" % \ (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], triplet_input.shape[0]//3, select_time1, select_time2, train_time, err)) summary = tf.Summary(value=[ tf.Summary.Value(tag="train_loss", simple_value=err), tf.Summary.Value(tag="active_count", simple_value=active_count), tf.Summary.Value( tag="triplet_num", simple_value=triplet_input.shape[0] // 3) ]) summary_writer.add_summary(summary, step) summary_writer.add_summary(summ, step) batch_count += 1 except tf.errors.OutOfRangeError: print("Epoch %d done!" % (epoch + 1)) break # validation on val_set print("Evaluating on validation set...") val_embeddings, _ = sess.run([embedding, set_emb], feed_dict={ input_ph: val_feats, dropout_ph: 1.0 }) mAP, mPrec = utils.evaluate_simple(val_embeddings, val_labels) val_sim_prob = np.zeros( (val_feats.shape[0], val_feats.shape[0]), dtype='float32') * np.nan val_comb = list( itertools.combinations(range(val_feats.shape[0]), 2)) for start, end in zip( range(0, len(val_comb), cfg.batch_size), range(cfg.batch_size, len(val_comb) + cfg.batch_size, cfg.batch_size)): end = min(end, len(val_comb)) comb_idx = [] for c in val_comb[start:end]: comb_idx.extend([c[0], c[1], c[1]]) emb = sess.run(pddm_ap, feed_dict={ input_ph: val_feats[comb_idx], dropout_ph: 1.0 }) for i in range(emb.shape[0]): val_sim_prob[val_comb[start + i][0], val_comb[start + i][1]] = emb[i] val_sim_prob[val_comb[start + i][1], val_comb[start + i][0]] = emb[i] mAP_PDDM = 0.0 count = 0 for i in range(val_labels.shape[0]): if val_labels[i] > 0: temp_labels = np.delete(val_labels, i, 0) temp = np.delete(val_sim_prob, i, 1) mAP_PDDM += average_precision_score( np.squeeze(temp_labels == val_labels[i, 0]), np.squeeze(1 - temp[i])) count += 1 mAP_PDDM /= count summary = tf.Summary(value=[ tf.Summary.Value(tag="Validation mAP", simple_value=mAP), tf.Summary.Value(tag="Validation mAP_PDDM", simple_value=mAP_PDDM), tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec) ]) summary_writer.add_summary(summary, step) print("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f\tmAP_PDDM: %.4f" % (epoch + 1, mAP, mPrec, mAP_PDDM)) # config for embedding visualization config = projector.ProjectorConfig() visual_embedding = config.embeddings.add() visual_embedding.tensor_name = emb_var.name visual_embedding.metadata_path = os.path.join( result_dir, 'metadata_val.tsv') projector.visualize_embeddings(summary_writer, config) # save model saver.save(sess, os.path.join(result_dir, cfg.name + '.ckpt'), global_step=step)