Example #1
0
 def testShape(self):
     shape = [10, 5]
     gradients = tf.random_normal(shape)
     net = networks.CoordinateWiseDeepLSTM(layers=(1, 1))
     state = net.initial_state_for_inputs(gradients)
     update, _ = net(gradients, state)
     self.assertEqual(update.get_shape().as_list(), shape)
Example #2
0
 def testTrainable(self):
     """Tests the network contains trainable variables."""
     shape = [10, 5]
     gradients = tf.random_normal(shape)
     net = networks.CoordinateWiseDeepLSTM(layers=(1, ))
     state = net.initial_state_for_inputs(gradients)
     net(gradients, state)
     # Weights and biases for two layers.
     variables = nn.get_variables_in_module(net)
     self.assertEqual(len(variables), 4)
Example #3
0
    def testResults(self, initializer):
        """Tests zero updates when last layer is initialized to zero."""
        shape = [10]
        gradients = tf.random_normal(shape)
        net = networks.CoordinateWiseDeepLSTM(layers=(1, 1),
                                              initializer=initializer)
        state = net.initial_state_for_inputs(gradients)
        update, _ = net(gradients, state)

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            update_np = sess.run(update)
            self.assertAllEqual(update_np, np.zeros(shape))