Example #1
0
    def test_generator_grad_norm_progress(self):
        stable_stage_num_images = 2
        transition_stage_num_images = 3

        current_image_id_ph = tf.placeholder(tf.int32, [])
        progress = networks.compute_progress(current_image_id_ph,
                                             stable_stage_num_images,
                                             transition_stage_num_images,
                                             num_blocks=3)
        z = tf.random_normal([2, 10], dtype=tf.float32)
        x, _ = networks.generator(
            z, progress, _num_filters_stub,
            networks.ResolutionSchedule(start_resolutions=(4, 4),
                                        scale_base=2,
                                        num_resolutions=3))
        fake_loss = tf.reduce_sum(tf.square(x))
        grad_norms = [
            _get_grad_norm(
                fake_loss,
                tf.trainable_variables('.*/progressive_gan_block_1/.*')),
            _get_grad_norm(
                fake_loss,
                tf.trainable_variables('.*/progressive_gan_block_2/.*')),
            _get_grad_norm(
                fake_loss,
                tf.trainable_variables('.*/progressive_gan_block_3/.*'))
        ]

        grad_norms_output = None
        with self.test_session(use_gpu=True) as sess:
            sess.run(tf.global_variables_initializer())
            x1_np = sess.run(x, feed_dict={current_image_id_ph: 0.12})
            x2_np = sess.run(x, feed_dict={current_image_id_ph: 1.8})
            grad_norms_output = np.array([
                sess.run(grad_norms, feed_dict={current_image_id_ph: i})
                for i in range(15)  # total num of images
            ])

        self.assertEqual((2, 16, 16, 3), x1_np.shape)
        self.assertEqual((2, 16, 16, 3), x2_np.shape)
        # The gradient of block_1 is always on.
        self.assertEqual(
            np.argmax(grad_norms_output[:, 0] > 0), 0,
            'gradient norms {} for block 1 is not always on'.format(
                grad_norms_output[:, 0]))
        # The gradient of block_2 is on after 1 stable stage.
        self.assertEqual(
            np.argmax(grad_norms_output[:, 1] > 0), 3,
            'gradient norms {} for block 2 is not on at step 3'.format(
                grad_norms_output[:, 1]))
        # The gradient of block_3 is on after 2 stable stage + 1 transition stage.
        self.assertEqual(
            np.argmax(grad_norms_output[:, 2] > 0), 8,
            'gradient norms {} for block 3 is not on at step 8'.format(
                grad_norms_output[:, 2]))
Example #2
0
 def test_compute_progress(self):
     current_image_id_ph = tf.placeholder(tf.int32, [])
     progress = networks.compute_progress(current_image_id_ph,
                                          stable_stage_num_images=7,
                                          transition_stage_num_images=8,
                                          num_blocks=2)
     with self.test_session(use_gpu=True) as sess:
         progress_output = [
             sess.run(progress,
                      feed_dict={current_image_id_ph: current_image_id})
             for current_image_id in [0, 3, 6, 7, 8, 10, 15, 29, 100]
         ]
     self.assertArrayNear(progress_output,
                          [0.0, 0.0, 0.0, 0.0, 0.125, 0.375, 1.0, 1.0, 1.0],
                          1.0e-6)
def build_model(stage_id, batch_size, real_images, **kwargs):
    """Builds progressive GAN model.

  Args:
    stage_id: An integer of training stage index.
    batch_size: Number of training images in each minibatch.
    real_images: A 4D `Tensor` of NHWC format.
    **kwargs: A dictionary of
        'start_height': An integer of start image height.
        'start_width': An integer of start image width.
        'scale_base': An integer of resolution multiplier.
        'num_resolutions': An integer of number of progressive resolutions.
        'stable_stage_num_images': An integer of number of training images in
            the stable stage.
        'transition_stage_num_images': An integer of number of training images
            in the transition stage.
        'total_num_images': An integer of total number of training images.
        'kernel_size': Convolution kernel size.
        'colors': Number of image channels.
        'to_rgb_use_tanh_activation': Whether to apply tanh activation when
            output rgb.
        'fmap_base': Base number of filters.
        'fmap_decay': Decay of number of filters.
        'fmap_max': Max number of filters.
        'latent_vector_size': An integer of latent vector size.
        'gradient_penalty_weight': A float of gradient norm target for
            wasserstein loss.
        'gradient_penalty_target': A float of gradient penalty weight for
            wasserstein loss.
        'real_score_penalty_weight': A float of Additional penalty to keep
            the scores from drifting too far from zero.
        'adam_beta1': A float of Adam optimizer beta1.
        'adam_beta2': A float of Adam optimizer beta2.
        'generator_learning_rate': A float of generator learning rate.
        'discriminator_learning_rate': A float of discriminator learning rate.

  Returns:
    An inernal object that wraps all information about the model.
  """
    kernel_size = kwargs['kernel_size']
    colors = kwargs['colors']
    resolution_schedule = make_resolution_schedule(**kwargs)

    num_blocks, num_images = get_stage_info(stage_id, **kwargs)

    current_image_id = tf.train.get_or_create_global_step()
    current_image_id_inc_op = current_image_id.assign_add(batch_size)
    tf.summary.scalar('current_image_id', current_image_id)

    progress = networks.compute_progress(current_image_id,
                                         kwargs['stable_stage_num_images'],
                                         kwargs['transition_stage_num_images'],
                                         num_blocks)
    tf.summary.scalar('progress', progress)

    real_images = networks.blend_images(real_images,
                                        progress,
                                        resolution_schedule,
                                        num_blocks=num_blocks)

    def _num_filters_fn(block_id):
        """Computes number of filters of block `block_id`."""
        return networks.num_filters(block_id, kwargs['fmap_base'],
                                    kwargs['fmap_decay'], kwargs['fmap_max'])

    def _generator_fn(z):
        """Builds generator network."""
        return networks.generator(
            z,
            progress,
            _num_filters_fn,
            resolution_schedule,
            num_blocks=num_blocks,
            kernel_size=kernel_size,
            colors=colors,
            to_rgb_activation=(tf.tanh if kwargs['to_rgb_use_tanh_activation']
                               else None))

    def _discriminator_fn(x):
        """Builds discriminator network."""
        return networks.discriminator(x,
                                      progress,
                                      _num_filters_fn,
                                      resolution_schedule,
                                      num_blocks=num_blocks,
                                      kernel_size=kernel_size)

    ########## Define model.
    z = make_latent_vectors(batch_size, **kwargs)

    gan_model = tfgan.gan_model(
        generator_fn=lambda z: _generator_fn(z)[0],
        discriminator_fn=lambda x, unused_z: _discriminator_fn(x)[0],
        real_data=real_images,
        generator_inputs=z)

    ########## Define loss.
    gan_loss = define_loss(gan_model, **kwargs)

    ########## Define train ops.
    gan_train_ops, optimizer_var_list = define_train_ops(
        gan_model, gan_loss, **kwargs)
    gan_train_ops = gan_train_ops._replace(
        global_step_inc_op=current_image_id_inc_op)

    ########## Generator smoothing.
    generator_ema = tf.train.ExponentialMovingAverage(decay=0.999)
    gan_train_ops, generator_vars_to_restore = add_generator_smoothing_ops(
        generator_ema, gan_model, gan_train_ops)

    class Model(object):
        pass

    model = Model()
    model.stage_id = stage_id
    model.batch_size = batch_size
    model.resolution_schedule = resolution_schedule
    model.num_images = num_images
    model.num_blocks = num_blocks
    model.current_image_id = current_image_id
    model.progress = progress
    model.num_filters_fn = _num_filters_fn
    model.generator_fn = _generator_fn
    model.discriminator_fn = _discriminator_fn
    model.gan_model = gan_model
    model.gan_loss = gan_loss
    model.gan_train_ops = gan_train_ops
    model.optimizer_var_list = optimizer_var_list
    model.generator_ema = generator_ema
    model.generator_vars_to_restore = generator_vars_to_restore
    return model
Example #4
0
    def __init__(self, stage_id, batch_size, config):
        """Build graph stage from config dictionary.

    Stage_id and batch_size change during training so they are kept separate
    from the global config. This function is also called by 'load_from_path()'.

    Args:
      stage_id: (int) Build generator/discriminator with this many stages.
      batch_size: (int) Build graph with fixed batch size.
      config: (dict) All the global state.
    """
        data_helper = data_helpers.registry[config['data_type']](config)
        real_images, real_one_hot_labels = data_helper.provide_data(batch_size)

        # gen_one_hot_labels = real_one_hot_labels
        gen_one_hot_labels = data_helper.provide_one_hot_labels(batch_size)
        num_tokens = int(real_one_hot_labels.shape[1])

        current_image_id = tf.train.get_or_create_global_step()
        current_image_id_inc_op = current_image_id.assign_add(batch_size)
        tf.summary.scalar('current_image_id', current_image_id)

        train_time = tf.Variable(0., dtype=tf.float32, trainable=False)
        tf.summary.scalar('train_time', train_time)

        resolution_schedule = train_util.make_resolution_schedule(**config)
        num_blocks, num_images = train_util.get_stage_info(stage_id, **config)

        num_stages = (2 * config['num_resolutions']) - 1
        if config['train_time_limit'] is not None:
            stage_times = np.zeros(num_stages, dtype='float32')
            stage_times[0] = 1.
            for i in range(1, num_stages):
                stage_times[i] = (stage_times[i - 1] *
                                  config['train_time_stage_multiplier'])
            stage_times *= config['train_time_limit'] / np.sum(stage_times)
            stage_times = np.cumsum(stage_times)
            print('Stage times:')
            for t in stage_times:
                print('\t{}'.format(t))

        if config['train_progressive']:
            if config['train_time_limit'] is not None:
                progress = networks.compute_progress_from_time(
                    train_time, config['num_resolutions'], num_blocks,
                    stage_times)
            else:
                progress = networks.compute_progress(
                    current_image_id, config['stable_stage_num_images'],
                    config['transition_stage_num_images'], num_blocks)
        else:
            progress = num_blocks - 1.  # Maximum value, must be float.
            num_images = 0
            for stage_id_idx in train_util.get_stage_ids(**config):
                _, n = train_util.get_stage_info(stage_id_idx, **config)
                num_images += n

        # Add to config
        config['resolution_schedule'] = resolution_schedule
        config['num_blocks'] = num_blocks
        config['num_images'] = num_images
        config['progress'] = progress
        config['num_tokens'] = num_tokens
        tf.summary.scalar('progress', progress)

        real_images = networks.blend_images(real_images,
                                            progress,
                                            resolution_schedule,
                                            num_blocks=num_blocks)

        ########## Define model.
        noises = train_util.make_latent_vectors(batch_size, **config)

        # Get network functions and wrap with hparams
        g_fn = lambda x: net_fns.g_fn_registry[config['g_fn']](x, **config)
        d_fn = lambda x: net_fns.d_fn_registry[config['d_fn']](x, **config)

        # Extra lambda functions to conform to tfgan.gan_model interface
        gan_model = tfgan.gan_model(
            generator_fn=lambda inputs: g_fn(inputs)[0],
            discriminator_fn=lambda images, unused_cond: d_fn(images)[0],
            real_data=real_images,
            generator_inputs=(noises, gen_one_hot_labels))

        ########## Define loss.
        gan_loss = train_util.define_loss(gan_model, **config)

        ########## Auxiliary loss functions
        def _compute_ac_loss(images, target_one_hot_labels):
            with tf.variable_scope(gan_model.discriminator_scope, reuse=True):
                _, end_points = d_fn(images)
            return tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits_v2(
                    labels=tf.stop_gradient(target_one_hot_labels),
                    logits=end_points['classification_logits']))

        def _compute_gl_consistency_loss(data):
            """G&L consistency loss."""
            sh = data_helper.specgrams_helper
            is_mel = isinstance(data_helper, data_helpers.DataMelHelper)
            if is_mel:
                stfts = sh.melspecgrams_to_stfts(data)
            else:
                stfts = sh.specgrams_to_stfts(data)
            waves = sh.stfts_to_waves(stfts)
            new_stfts = sh.waves_to_stfts(waves)
            # Magnitude loss
            mag = tf.abs(stfts)
            new_mag = tf.abs(new_stfts)
            # Normalize loss to max
            get_max = lambda x: tf.reduce_max(x, axis=(1, 2), keepdims=True)
            mag_max = get_max(mag)
            new_mag_max = get_max(new_mag)
            mag_scale = tf.maximum(1.0, tf.maximum(mag_max, new_mag_max))
            mag_diff = (mag - new_mag) / mag_scale
            mag_loss = tf.reduce_mean(tf.square(mag_diff))
            return mag_loss

        with tf.name_scope('losses'):
            # Loss weights
            gen_ac_loss_weight = config['generator_ac_loss_weight']
            dis_ac_loss_weight = config['discriminator_ac_loss_weight']
            gen_gl_consistency_loss_weight = config[
                'gen_gl_consistency_loss_weight']

            # AC losses.
            fake_ac_loss = _compute_ac_loss(gan_model.generated_data,
                                            gen_one_hot_labels)
            real_ac_loss = _compute_ac_loss(gan_model.real_data,
                                            real_one_hot_labels)

            # GL losses.
            is_fourier = isinstance(data_helper,
                                    (data_helpers.DataSTFTHelper,
                                     data_helpers.DataSTFTNoIFreqHelper,
                                     data_helpers.DataMelHelper))
            if isinstance(data_helper, data_helpers.DataWaveHelper):
                is_fourier = False

            if is_fourier:
                fake_gl_loss = _compute_gl_consistency_loss(
                    gan_model.generated_data)
                real_gl_loss = _compute_gl_consistency_loss(
                    gan_model.real_data)

            # Total losses.
            wx_fake_ac_loss = gen_ac_loss_weight * fake_ac_loss
            wx_real_ac_loss = dis_ac_loss_weight * real_ac_loss
            wx_fake_gl_loss = 0.0
            if (is_fourier and gen_gl_consistency_loss_weight > 0 and stage_id
                    == train_util.get_total_num_stages(**config) - 1):
                wx_fake_gl_loss = fake_gl_loss * gen_gl_consistency_loss_weight
            # Update the loss functions
            gan_loss = gan_loss._replace(
                generator_loss=(gan_loss.generator_loss + wx_fake_ac_loss +
                                wx_fake_gl_loss),
                discriminator_loss=(gan_loss.discriminator_loss +
                                    wx_real_ac_loss))

            tf.summary.scalar('fake_ac_loss', fake_ac_loss)
            tf.summary.scalar('real_ac_loss', real_ac_loss)
            tf.summary.scalar('wx_fake_ac_loss', wx_fake_ac_loss)
            tf.summary.scalar('wx_real_ac_loss', wx_real_ac_loss)
            tf.summary.scalar('total_gen_loss', gan_loss.generator_loss)
            tf.summary.scalar('total_dis_loss', gan_loss.discriminator_loss)

            if is_fourier:
                tf.summary.scalar('fake_gl_loss', fake_gl_loss)
                tf.summary.scalar('real_gl_loss', real_gl_loss)
                tf.summary.scalar('wx_fake_gl_loss', wx_fake_gl_loss)

        ########## Define train ops.
        gan_train_ops, optimizer_var_list = train_util.define_train_ops(
            gan_model, gan_loss, **config)
        gan_train_ops = gan_train_ops._replace(
            global_step_inc_op=current_image_id_inc_op)

        ########## Generator smoothing.
        generator_ema = tf.train.ExponentialMovingAverage(decay=0.999)
        gan_train_ops, generator_vars_to_restore = \
            train_util.add_generator_smoothing_ops(generator_ema,
                                                   gan_model,
                                                   gan_train_ops)
        load_scope = tf.variable_scope(
            gan_model.generator_scope,
            reuse=True,
            custom_getter=train_util.make_var_scope_custom_getter_for_ema(
                generator_ema))

        ########## Separate path for generating samples with a placeholder (ph)
        # Mapping of pitches to one-hot labels
        pitch_counts = data_helper.get_pitch_counts()
        pitch_to_label_dict = {}
        for i, pitch in enumerate(sorted(pitch_counts.keys())):
            pitch_to_label_dict[pitch] = i

        # (label_ph, noise_ph) -> fake_wave_ph
        labels_ph = tf.placeholder(tf.int32, [batch_size])
        noises_ph = tf.placeholder(tf.float32,
                                   [batch_size, config['latent_vector_size']])
        num_pitches = len(pitch_counts)
        one_hot_labels_ph = tf.one_hot(labels_ph, num_pitches)
        with load_scope:
            fake_data_ph, _ = g_fn((noises_ph, one_hot_labels_ph))
            fake_waves_ph = data_helper.data_to_waves(fake_data_ph)

        if config['train_time_limit'] is not None:
            stage_train_time_limit = stage_times[stage_id]
            #  config['train_time_limit'] * \
            # (float(stage_id+1) / ((2*config['num_resolutions'])-1))
        else:
            stage_train_time_limit = None

        ########## Add variables as properties
        self.stage_id = stage_id
        self.batch_size = batch_size
        self.config = config
        self.data_helper = data_helper
        self.resolution_schedule = resolution_schedule
        self.num_images = num_images
        self.num_blocks = num_blocks
        self.current_image_id = current_image_id
        self.progress = progress
        self.generator_fn = g_fn
        self.discriminator_fn = d_fn
        self.gan_model = gan_model
        self.fake_ac_loss = fake_ac_loss
        self.real_ac_loss = real_ac_loss
        self.gan_loss = gan_loss
        self.gan_train_ops = gan_train_ops
        self.optimizer_var_list = optimizer_var_list
        self.generator_ema = generator_ema
        self.generator_vars_to_restore = generator_vars_to_restore
        self.real_images = real_images
        self.real_one_hot_labels = real_one_hot_labels
        self.load_scope = load_scope
        self.pitch_counts = pitch_counts
        self.pitch_to_label_dict = pitch_to_label_dict
        self.labels_ph = labels_ph
        self.noises_ph = noises_ph
        self.fake_waves_ph = fake_waves_ph
        self.saver = tf.train.Saver()
        self.sess = tf.Session()
        self.train_time = train_time
        self.stage_train_time_limit = stage_train_time_limit
Example #5
0
def build_model(stage_id, real_images, **kwargs):
  """Builds progressive GAN model.

  Args:
    stage_id: An integer of training stage index.
    real_images: A 4D `Tensor` of NHWC format.
    **kwargs: A dictionary of
        'batch_size': Number of training images in each minibatch.
        'start_height': An integer of start image height.
        'start_width': An integer of start image width.
        'scale_base': An integer of resolution multiplier.
        'num_resolutions': An integer of number of progressive resolutions.
        'stable_stage_num_images': An integer of number of training images in
            the stable stage.
        'transition_stage_num_images': An integer of number of training images
            in the transition stage.
        'total_num_images': An integer of total number of training images.
        'kernel_size': Convolution kernel size.
        'colors': Number of image channels.
        'to_rgb_use_tanh_activation': Whether to apply tanh activation when
            output rgb.
        'fmap_base': Base number of filters.
        'fmap_decay': Decay of number of filters.
        'fmap_max': Max number of filters.
        'latent_vector_size': An integer of latent vector size.
        'gradient_penalty_weight': A float of gradient norm target for
            wasserstein loss.
        'gradient_penalty_target': A float of gradient penalty weight for
            wasserstein loss.
        'real_score_penalty_weight': A float of Additional penalty to keep
            the scores from drifting too far from zero.
        'adam_beta1': A float of Adam optimizer beta1.
        'adam_beta2': A float of Adam optimizer beta2.
        'generator_learning_rate': A float of generator learning rate.
        'discriminator_learning_rate': A float of discriminator learning rate.

  Returns:
    An inernal object that wraps all information about the model.
  """
  batch_size = kwargs['batch_size']
  kernel_size = kwargs['kernel_size']
  colors = kwargs['colors']
  resolution_schedule = make_resolution_schedule(**kwargs)

  num_blocks, num_images = get_stage_info(stage_id, **kwargs)

  global_step = tf.train.get_or_create_global_step()
  current_image_id = global_step * batch_size
  tf.summary.scalar('current_image_id', current_image_id)

  progress = networks.compute_progress(
      current_image_id, kwargs['stable_stage_num_images'],
      kwargs['transition_stage_num_images'], num_blocks)
  tf.summary.scalar('progress', progress)

  real_images = networks.blend_images(
      real_images, progress, resolution_schedule, num_blocks=num_blocks)

  def _num_filters_fn(block_id):
    """Computes number of filters of block `block_id`."""
    return networks.num_filters(block_id, kwargs['fmap_base'],
                                kwargs['fmap_decay'], kwargs['fmap_max'])

  def _generator_fn(z):
    """Builds generator network."""
    return networks.generator(
        z,
        progress,
        _num_filters_fn,
        resolution_schedule,
        num_blocks=num_blocks,
        kernel_size=kernel_size,
        colors=colors,
        to_rgb_activation=(tf.tanh
                           if kwargs['to_rgb_use_tanh_activation'] else None))

  def _discriminator_fn(x):
    """Builds discriminator network."""
    return networks.discriminator(
        x,
        progress,
        _num_filters_fn,
        resolution_schedule,
        num_blocks=num_blocks,
        kernel_size=kernel_size)

  ########## Define model.
  z = make_latent_vectors(batch_size, **kwargs)

  gan_model = tfgan.gan_model(
      generator_fn=lambda z: _generator_fn(z)[0],
      discriminator_fn=lambda x, unused_z: _discriminator_fn(x)[0],
      real_data=real_images,
      generator_inputs=z)

  ########## Define loss.
  gan_loss = define_loss(gan_model, **kwargs)

  ########## Define train ops.
  gan_train_ops, optimizer_var_list = define_train_ops(gan_model, gan_loss,
                                                       **kwargs)

  ########## Generator smoothing.
  generator_ema = tf.train.ExponentialMovingAverage(decay=0.999)
  gan_train_ops, generator_vars_to_restore = add_generator_smoothing_ops(
      generator_ema, gan_model, gan_train_ops)

  class Model(object):
    pass

  model = Model()
  model.resolution_schedule = resolution_schedule
  model.stage_id = stage_id
  model.num_images = num_images
  model.num_blocks = num_blocks
  model.global_step = global_step
  model.current_image_id = current_image_id
  model.progress = progress
  model.num_filters_fn = _num_filters_fn
  model.generator_fn = _generator_fn
  model.discriminator_fn = _discriminator_fn
  model.gan_model = gan_model
  model.gan_loss = gan_loss
  model.gan_train_ops = gan_train_ops
  model.optimizer_var_list = optimizer_var_list
  model.generator_ema = generator_ema
  model.generator_vars_to_restore = generator_vars_to_restore
  return model