def initialize(self, opt): super(SupervisedPoseTransferModel, self).initialize(opt) ################################### # define transformer ################################### if opt.which_model_T == 'resnet': self.netT = networks.ResnetGenerator( input_nc=3 + self.get_pose_dim(opt.pose_type), output_nc=3, ngf=opt.T_nf, norm_layer=networks.get_norm_layer(opt.norm), use_dropout=not opt.no_dropout, n_blocks=9, gpu_ids=opt.gpu_ids) elif opt.which_model_T == 'unet': self.netT = networks.UnetGenerator_v2( input_nc=3 + self.get_pose_dim(opt.pose_type), output_nc=3, num_downs=8, ngf=opt.T_nf, norm_layer=networks.get_norm_layer(opt.norm), use_dropout=not opt.no_dropout, gpu_ids=opt.gpu_ids) else: raise NotImplementedError() if opt.gpu_ids: self.netT.cuda() networks.init_weights(self.netT, init_type=opt.init_type) ################################### # define discriminator ################################### self.use_GAN = self.is_train and opt.loss_weight_gan > 0 if self.use_GAN > 0: self.netD = networks.define_D_from_params( input_nc=3 + self.get_pose_dim(opt.pose_type) if opt.D_cond else 3, ndf=opt.D_nf, which_model_netD='n_layers', n_layers_D=3, norm=opt.norm, which_gan=opt.which_gan, init_type=opt.init_type, gpu_ids=opt.gpu_ids) else: self.netD = None ################################### # loss functions ################################### if self.is_train: self.loss_functions = [] self.schedulers = [] self.optimizers = [] self.crit_L1 = nn.L1Loss() self.crit_vgg = networks.VGGLoss_v2(self.gpu_ids) # self.crit_vgg_old = networks.VGGLoss(self.gpu_ids) self.crit_psnr = networks.PSNR() self.crit_ssim = networks.SSIM() self.loss_functions += [self.crit_L1, self.crit_vgg] self.optim = torch.optim.Adam(self.netT.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2)) self.optimizers += [self.optim] if self.use_GAN: self.crit_GAN = networks.GANLoss( use_lsgan=opt.which_gan == 'lsgan', tensor=self.Tensor) self.optim_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr_D, betas=(opt.beta1, opt.beta2)) self.loss_functions.append(self.use_GAN) self.optimizers.append(self.optim_D) # todo: add pose loss for optim in self.optimizers: self.schedulers.append(networks.get_scheduler(optim, opt)) self.fake_pool = ImagePool(opt.pool_size) ################################### # load trained model ################################### if not self.is_train: self.load_network(self.netT, 'netT', opt.which_model)
def initialize(self, opt): super(EncoderDecoderFramework_DFN, self).initialize(opt) ################################### # define encoder ################################### self.encoder = networks.define_encoder_v2(opt) ################################### # define decoder ################################### self.decoder = networks.define_decoder_v2(opt) ################################### # guide encoder ################################### self.guide_encoder, self.opt_guide = networks.load_encoder_v2(opt, opt.which_model_guide) self.guide_encoder.eval() for p in self.guide_encoder.parameters(): p.requires_grad = False ################################### # DFN Modules ################################### if self.opt.use_dfn: self.dfn = networks.define_DFN_from_params(nf=opt.nof, ng=self.opt_guide.nof, nmid=opt.dfn_nmid, feat_size=opt.feat_size, local_size=opt.dfn_local_size, nblocks=opt.dfn_nblocks, norm=opt.norm, gpu_ids=opt.gpu_ids, init_type=opt.init_type) else: self.dfn = None ################################### # Discriminator ################################### self.use_GAN = self.is_train and opt.loss_weight_gan > 0 if self.is_train: if self.use_GAN: # if not self.opt.D_cond: # input_nc = self.decoder.output_nc # else: # input_nc = self.decoder.output_nc + self.encoder.input_nc if self.opt.gan_level == 'image': input_nc = self.decoder.output_nc elif self.opt.gan_level == 'feature': input_nc = self.opt.nof if self.opt.D_cond: if self.opt.D_cond_type == 'cond': input_nc += self.encoder.input_nc elif self.opt.D_cond_type == 'pair': input_nc += input_nc self.netD = networks.define_D_from_params(input_nc=input_nc, ndf=64, which_model_netD='n_layers', n_layers_D=3, norm=opt.norm, which_gan=opt.which_gan, init_type=opt.init_type, gpu_ids=opt.gpu_ids) else: self.netD = None ################################### # loss functions ################################### if self.is_train: self.loss_functions = [] self.schedulers = [] self.crit_image = nn.L1Loss() self.crit_seg = nn.CrossEntropyLoss() self.crit_edge = nn.BCELoss() self.loss_functions += [self.crit_image, self.crit_seg, self.crit_edge] if self.opt.use_dfn: self.optim = torch.optim.Adam([{'params': self.encoder.parameters()}, {'params': self.decoder.parameters()}, {'params': self.dfn.parameters()}], lr=opt.lr, betas=(opt.beta1, opt.beta2)) else: self.optim = torch.optim.Adam([{'params': self.encoder.parameters()}, {'params': self.decoder.parameters()}], lr=opt.lr, betas=(opt.beta1, opt.beta2)) self.optimizers = [self.optim] # GAN loss and optimizers if self.use_GAN > 0: self.crit_GAN = networks.GANLoss(use_lsgan=opt.which_gan=='lsgan', tensor=self.Tensor) self.optim_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr_D, betas=(0.5, 0.999)) self.loss_functions += [self.crit_GAN] self.optimizers += [self.optim_D] for optim in self.optimizers: self.schedulers.append(networks.get_scheduler(optim, opt)) ################################### # load trained model ################################### if not self.is_train: self.load_network(self.encoder, 'encoder', opt.which_epoch) self.load_network(self.decoder, 'decoder', opt.which_epoch) if opt.use_dfn: self.load_network(self.dfn, 'dfn', opt.which_epoch)
def initialize(self, opt): super(MultimodalDesignerGAN, self).initialize(opt) ################################### # load/define networks ################################### # basic G self.netG = networks.define_G(opt) # encoders self.encoders = {} if opt.use_edge: self.edge_encoder = networks.define_image_encoder(opt, 'edge') self.encoders['edge_encoder'] = self.edge_encoder if opt.use_color: self.color_encoder = networks.define_image_encoder(opt, 'color') self.encoders['color_encoder'] = self.color_encoder if opt.use_attr: self.attr_encoder, self.opt_AE = network_loader.load_attribute_encoder_net( id=opt.which_model_AE, gpu_ids=opt.gpu_ids) # basic D and auxiliary Ds if self.is_train: # basic D self.netD = networks.define_D(opt) # auxiliary Ds self.auxiliaryDs = {} if opt.use_edge_D: assert opt.use_edge self.netD_edge = networks.define_D_from_params( input_nc=opt.edge_nof + 3, ndf=opt.ndf, which_model_netD=opt.which_model_netD, n_layers_D=opt.n_layers_D, norm=opt.norm, which_gan='dcgan', init_type=opt.init_type, gpu_ids=opt.gpu_ids) self.auxiliaryDs['D_edge'] = self.netD_edge if opt.use_color_D: assert opt.use_color self.netD_color = networks.define_D_from_params( input_nc=opt.color_nof + 3, ndf=opt.ndf, which_model_netD=opt.which_model_netD, n_layers_D=opt.n_layers_D, norm=opt.norm, which_gan='dcgan', init_type=opt.init_type, gpu_ids=opt.gpu_ids) self.auxiliaryDs['D_color'] = self.netD_color if opt.use_attr_D: assert opt.use_attr attr_nof = opt.n_attr_feat if opt.attr_cond_type in { 'feat', 'feat_map' } else opt.n_attr self.netD_attr = networks.define_D_from_params( input_nc=attr_nof + 3, ndf=opt.ndf, which_model_netD=opt.which_model_netD, n_layers_D=opt.n_layers_D, norm=opt.norm, which_gan='dcgan', init_type=opt.init_type, gpu_ids=opt.gpu_ids) self.auxiliaryDs['D_attr'] = self.netD_attr # load weights if not opt.continue_train: if opt.which_model_init != 'none': self.load_network(self.netG, 'G', 'latest', opt.which_model_init) self.load_network(self.netD, 'D', 'latest', opt.which_model_init) for l, net in self.encoders.iteritems(): self.load_network(net, l, 'latest', opt.which_model_init) for l, net in self.auxiliaryDs.iteritems(): self.load_network(net, l, 'latest', opt.which_model_init) else: self.load_network(self.netG, 'G', opt.which_epoch) self.load_network(self.netD, 'D', opt.which_epoch) for l, net in self.encoders.iteritems(): self.load_network(net, l, opt.which_epoch) for l, net in self.auxiliaryDs.iteritems(): self.load_network(net, l, opt.which_epoch) else: self.load_network(self.netG, 'G', opt.which_epoch) for l, net in self.encoders.iteritems(): self.load_network(net, l, opt.which_epoch) if self.is_train: self.fake_pool = ImagePool(opt.pool_size) ################################### # define loss functions and loss buffers ################################### self.loss_functions = [] if opt.which_gan in {'dcgan', 'lsgan'}: self.crit_GAN = networks.GANLoss( use_lsgan=opt.which_gan == 'lsgan', tensor=self.Tensor) else: # WGAN loss will be calculated in self.backward_D_wgangp and self.backward_G self.crit_GAN = None self.loss_functions.append(self.crit_GAN) self.crit_L1 = nn.L1Loss() self.loss_functions.append(self.crit_L1) if self.opt.loss_weight_vgg > 0: self.crit_vgg = networks.VGGLoss(self.gpu_ids) self.loss_functions.append(self.crit_vgg) self.crit_psnr = networks.SmoothLoss(networks.PSNR()) self.loss_functions.append(self.crit_psnr) ################################### # create optimizers ################################### self.schedulers = [] self.optimizers = [] # optim_G will optimize parameters of netG and all image encoders (except attr_encoder) G_param_groups = [{'params': self.netG.parameters()}] for l, net in self.encoders.iteritems(): G_param_groups.append({'params': net.parameters()}) self.optim_G = torch.optim.Adam(G_param_groups, lr=opt.lr, betas=(opt.beta1, opt.beta2)) self.optimizers.append(self.optim_G) # optim_D will optimize parameters of netD self.optim_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr_D, betas=(opt.beta1, opt.beta2)) self.optimizers.append(self.optim_D) # optim_D_aux will optimize parameters of auxiliaryDs if len(self.auxiliaryDs) > 0: aux_D_param_groups = [{ 'params': net.parameters() } for net in self.auxiliaryDs.values()] self.optim_D_aux = torch.optim.Adam(aux_D_param_groups, lr=opt.lr_D, betas=(opt.beta1, opt.beta2)) self.optimizers.append(self.optim_D_aux) for optim in self.optimizers: self.schedulers.append(networks.get_scheduler(optim, opt)) # color transformation from std to imagenet # img_imagenet = img_std * a + b self.trans_std_to_imagenet = { 'a': Variable(self.Tensor([0.5 / 0.229, 0.5 / 0.224, 0.5 / 0.225]), requires_grad=False).view(3, 1, 1), 'b': Variable(self.Tensor([(0.5 - 0.485) / 0.229, (0.5 - 0.456) / 0.224, (0.5 - 0.406) / 0.225]), requires_grad=False).view(3, 1, 1) }
def initialize(self, opt): super(VUnetPoseTransferModel, self).initialize(opt) ################################### # define transformer ################################### self.netT = networks.VariationalUnet( input_nc_dec = self.get_pose_dim(opt.pose_type), input_nc_enc = self.get_appearance_dim(opt.appearance_type), output_nc = self.get_output_dim(opt.output_type), nf = opt.vunet_nf, max_nf = opt.vunet_max_nf, input_size = opt.fine_size, n_latent_scales = opt.vunet_n_latent_scales, bottleneck_factor = opt.vunet_bottleneck_factor, box_factor = opt.vunet_box_factor, n_residual_blocks = 2, norm_layer = networks.get_norm_layer(opt.norm), activation = nn.ReLU(False), use_dropout = False, gpu_ids = opt.gpu_ids, output_tanh = False, ) if opt.gpu_ids: self.netT.cuda() networks.init_weights(self.netT, init_type=opt.init_type) ################################### # define discriminator ################################### self.use_GAN = self.is_train and opt.loss_weight_gan > 0 if self.use_GAN: self.netD = networks.define_D_from_params( input_nc=3+self.get_pose_dim(opt.pose_type) if opt.D_cond else 3, ndf=opt.D_nf, which_model_netD='n_layers', n_layers_D=opt.D_n_layer, norm=opt.norm, which_gan=opt.which_gan, init_type=opt.init_type, gpu_ids=opt.gpu_ids) else: self.netD = None ################################### # loss functions ################################### self.crit_psnr = networks.PSNR() self.crit_ssim = networks.SSIM() if self.is_train: self.optimizers =[] self.crit_vgg = networks.VGGLoss_v2(self.gpu_ids, opt.content_layer_weight, opt.style_layer_weight, opt.shifted_style) # self.crit_vgg_old = networks.VGGLoss(self.gpu_ids) self.optim = torch.optim.Adam(self.netT.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay) self.optimizers += [self.optim] if self.use_GAN: self.crit_GAN = networks.GANLoss(use_lsgan=opt.which_gan=='lsgan', tensor=self.Tensor) self.optim_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr_D, betas=(opt.beta1, opt.beta2)) self.optimizers.append(self.optim_D) # todo: add pose loss self.fake_pool = ImagePool(opt.pool_size) ################################### # load trained model ################################### if not self.is_train: self.load_network(self.netT, 'netT', opt.which_epoch) elif opt.continue_train: self.load_network(self.netT, 'netT', opt.which_epoch) self.load_optim(self.optim, 'optim', opt.which_epoch) if self.use_GAN: self.load_network(self.netD, 'netD', opt.which_epoch) self.load_optim(self.optim_D, 'optim_D', opt.which_epoch) ################################### # schedulers ################################### if self.is_train: self.schedulers = [] for optim in self.optimizers: self.schedulers.append(networks.get_scheduler(optim, opt))
def initialize(self, opt): super(TwoStagePoseTransferModel, self).initialize(opt) ################################### # load pretrained stage-1 (coarse) network ################################### self._create_stage_1_net(opt) ################################### # define stage-2 (refine) network ################################### # local patch encoder if opt.which_model_s2e == 'patch_embed': self.netT_s2e = networks.LocalPatchEncoder( n_patch=len(opt.patch_indices), input_nc=3, output_nc=opt.s2e_nof, nf=opt.s2e_nf, max_nf=opt.s2e_max_nf, input_size=opt.patch_size, bottleneck_factor=opt.s2e_bottleneck_factor, n_residual_blocks=2, norm_layer=networks.get_norm_layer(opt.norm), activation=nn.ReLU(False), use_dropout=False, gpu_ids=opt.gpu_ids, ) s2e_nof = opt.s2e_nof elif opt.which_model_s2e == 'patch': self.netT_s2e = networks.LocalPatchRearranger( n_patch=len(opt.patch_indices), image_size=opt.fine_size, ) s2e_nof = 3 elif opt.which_model_s2e == 'seg_embed': self.netT_s2e = networks.SegmentRegionEncoder( seg_nc=self.opt.seg_nc, input_nc=3, output_nc=opt.s2e_nof, nf=opt.s2d_nf, input_size=opt.fine_size, n_blocks=3, norm_layer=networks.get_norm_layer(opt.norm), activation=nn.ReLU, use_dropout=False, grid_level=opt.s2e_grid_level, gpu_ids=opt.gpu_ids, ) s2e_nof = opt.s2e_nof + opt.s2e_grid_level else: raise NotImplementedError() if opt.gpu_ids: self.netT_s2e.cuda() # decoder if self.opt.which_model_s2d == 'resnet': self.netT_s2d = networks.ResnetGenerator( input_nc=3 + s2e_nof, output_nc=3, ngf=opt.s2d_nf, norm_layer=networks.get_norm_layer(opt.norm), activation=nn.ReLU, use_dropout=False, n_blocks=opt.s2d_nblocks, gpu_ids=opt.gpu_ids, output_tanh=False, ) elif self.opt.which_model_s2d == 'unet': self.netT_s2d = networks.UnetGenerator_v2( input_nc=3 + s2e_nof, output_nc=3, num_downs=8, ngf=opt.s2d_nf, max_nf=opt.s2d_nf * 2**3, norm_layer=networks.get_norm_layer(opt.norm), use_dropout=False, gpu_ids=opt.gpu_ids, output_tanh=False, ) elif self.opt.which_model_s2d == 'rpresnet': self.netT_s2d = networks.RegionPropagationResnetGenerator( input_nc=3 + s2e_nof, output_nc=3, ngf=opt.s2d_nf, norm_layer=networks.get_norm_layer(opt.norm), activation=nn.ReLU, use_dropout=False, nblocks=opt.s2d_nblocks, gpu_ids=opt.gpu_ids, output_tanh=False) else: raise NotImplementedError() if opt.gpu_ids: self.netT_s2d.cuda() ################################### # define discriminator ################################### self.use_GAN = self.is_train and opt.loss_weight_gan > 0 if self.use_GAN: self.netD = networks.define_D_from_params( input_nc=3 + self.get_pose_dim(opt.pose_type) if opt.D_cond else 3, ndf=opt.D_nf, which_model_netD='n_layers', n_layers_D=opt.D_n_layer, norm=opt.norm, which_gan=opt.which_gan, init_type=opt.init_type, gpu_ids=opt.gpu_ids) else: self.netD = None ################################### # loss functions ################################### self.crit_psnr = networks.PSNR() self.crit_ssim = networks.SSIM() if self.is_train: self.optimizers = [] self.crit_vgg = networks.VGGLoss_v2(self.gpu_ids, opt.content_layer_weight, opt.style_layer_weight, opt.shifted_style) self.optim = torch.optim.Adam([{ 'params': self.netT_s2e.parameters() }, { 'params': self.netT_s2d.parameters() }], lr=opt.lr, betas=(opt.beta1, opt.beta2)) self.optimizers.append(self.optim) if opt.train_s1: self.optim_s1 = torch.optim.Adam(self.netT_s1.parameters(), lr=opt.lr_s1, betas=(opt.beta1, opt.beta2)) self.optimizers.append(self.optim_s1) if self.use_GAN: self.crit_GAN = networks.GANLoss( use_lsgan=opt.which_gan == 'lsgan', tensor=self.Tensor) self.optim_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr_D, betas=(opt.beta1, opt.beta2)) self.optimizers.append(self.optim_D) self.fake_pool = ImagePool(opt.pool_size) ################################### # init/load model ################################### if self.is_train: if not opt.continue_train: self.load_network(self.netT_s1, 'netT', 'latest', self.opt_s1.id) networks.init_weights(self.netT_s2e, init_type=opt.init_type) networks.init_weights(self.netT_s2d, init_type=opt.init_type) if self.use_GAN: networks.init_weights(self.netD, init_type=opt.init_type) else: self.load_network(self.netT_s1, 'netT_s1', opt.which_epoch) self.load_network(self.netT_s2e, 'netT_s2e', opt.which_epoch) self.load_network(self.netT_s2d, 'netT_s2d', opt.which_epoch) self.load_optim(self.optim, 'optim', opt.which_epoch) if self.use_GAN: self.load_network(self.netD, 'netD', opt.which_epoch) self.load_optim(self.optim_D, 'optim_D', opt.which_epoch) else: self.load_network(self.netT_s1, 'netT_s1', opt.which_epoch) self.load_network(self.netT_s2e, 'netT_s2e', opt.which_epoch) self.load_network(self.netT_s2d, 'netT_s2d', opt.which_epoch) ################################### # schedulers ################################### if self.is_train: self.schedulers = [] for optim in self.optimizers: self.schedulers.append(networks.get_scheduler(optim, opt))