Example #1
0
def extended_prefential_attachment(num_nodes, p, r):
    """Returns a random graph according to the Barabasi-Albert preferential
    attachment model with the extension explained by Cooper et al.

    A graph of ``num_nodes`` nodes is grown by attaching new nodes each with
    ``r`` edges that are preferentially attached to existing nodes with high
    degree.

    Parameters
    ----------
    num_nodes : int
        Number of nodes
    p : float
        Probability of doing preferential attachment; with 1 - p, we add an edge
        to a random neighbour.
    r : int
        Number of edges to add for every new vertex.

    Returns
    -------
    G : Graph
    """

    # Add r initial nodes (m0 in barabasi-speak)
    G = complete_graph(r)
    G.name = "extended_barabasi_albert_graph(%s,%s)" % (num_nodes, r)
    # List of existing nodes, with nodes repeated once for each adjacent edge
    repeated_nodes = range(0, r) * (r - 1)
    # Start adding the other n-r nodes. The first node is r.
    source = r

    while source < num_nodes:
        # First edge is (source, vertex_chosen_preferentially)
        i = random.randint(0, len(repeated_nodes) - 1)
        x = repeated_nodes[i]
        G.add_edge(source, x)
        repeated_nodes.extend([source, x])

        # Add the remaining r - 1 edges
        for i in range(0, r - 1):
            curr_p = uniform()
            if curr_p <= p:
                # Attach new vertex to an existing vertex (by preferential
                # attachment)
                i = random.randint(0, len(repeated_nodes) - 1)
                target = repeated_nodes[i]
                G.add_edge(source, target)
                repeated_nodes.extend([source, target])
            else:
                # Attach new vertex to random neighbour of x
                i = random.randint(0, len(G.neighbors(x)) - 1)
                target = G.neighbors(x)[i]
                G.add_edge(source, target)
                repeated_nodes.extend([source, target])

        source += 1
        if source % 1000 == 0:
            print(info(G))
    return G
Example #2
0
def load_graph(gen=True):

    if gen:
        G = read_gpickle('HTCM.gpickle')
    else:
        G = read_gpickle('Google.gpickle')
        G = convert_node_labels_to_integers(G)

    print info(G)
    print "Triangles in gen. graph:", sum(nx.triangles(G).values()) / 3

    max_deg1 = 0, max_deg2 = 0
    u1 = 0, u2 = 0
    for node in G.nodes():
        if max_deg < G.degree(node):
            max_deg = G.degree(node)
            u = node
    print "Max degree", max_deg, "at node", u, "(belonging to",\
          nx.triangles(G, u), "triangles)"

    return G
Example #3
0
                target = G.neighbors(x)[i]
                G.add_edge(source, target)
                repeated_nodes.extend([source, target])

        source += 1
        if source % 1000 == 0:
            print(info(G))
    return G


def Google_graph():
    # Create the Google graph object and return the largest connected subgraph
    G = read_edgelist('web-Google.txt', comments='#')
    G = max(nx.connected_component_subgraphs(G), key=len)
    G.name = "Google_graph"
    return G


if __name__ == '__main__':

    num_nodes = 600000
    p = 0.6
    r = 3
    G = extended_prefential_attachment(num_nodes, p, r)
    print info(G)
    write_gpickle(G, "HTCM.gpickle")

    G = Google_graph()
    print info(G)
    write_gpickle(G, "Google.gpickle")
Example #4
0
def ver_medidas(G):
    print(function.info(G))
    """
    Numero minimo de nodos que deben ser removidos para desconectar G
    """
    print("Numero minimo de nodos que deben ser removidos para desconectar G :"+str(approximation.node_connectivity(G)))

    """
    average clustering coefficient of G.
    """
    print("average clustering coefficient of G: "+str(approximation.average_clustering(G)))

    """
    Densidad de un Grafo
    """
    print("Densidad de G: "+str(function.density(G)))

    """
    Assortativity measures the similarity of connections in
    the graph with respect to the node degree.
    Valores positivos de r indican que existe una correlacion entre nodos 
    con grado similar, mientras que un valor negativo indica
    correlaciones entre nodos de diferente grado
    """

    print("degree assortativity:"+str(assortativity.degree_assortativity_coefficient(G)))

    """
    Assortativity measures the similarity of connections
    in the graph with respect to the given attribute.
    """

    print("assortativity for node attributes: "+str(assortativity.attribute_assortativity_coefficient(G,"crime")))

    """
    Grado promedio vecindad
    """
    plt.plot(assortativity.average_neighbor_degree(G).values())
    plt.title("Grado promedio vecindad")
    plt.xlabel("Nodo")
    plt.ylabel("Grado")
    plt.show();

    """
    Grado de Centralidad de cada nodo
    """

    plt.plot(centrality.degree_centrality(G).values())
    plt.title("Grado de centralidad")
    plt.xlabel("Nodo")
    plt.ylabel("Centralidad")
    plt.show();


    """
    Calcular el coeficiente de agrupamiento para nodos
    """

    plt.plot(cluster.clustering(G).values())
    plt.title("coeficiente de agrupamiento")
    plt.xlabel("Nodo")
    plt.show();

    """
    Media coeficiente de Agrupamiento
    """
    print("Coeficiente de agrupamiento de G:"+str(cluster.average_clustering(G)))

    """
    Centro del grafo
    El centro de un grafo G es el subgrafo inducido por el 
    conjunto de vertices de excentricidad minima.

     La  excentricidad  de  v  in  V  se  define  como  la
     distancia maxima desde v a cualquier otro vertice del 
     grafo G siguiendo caminos de longitud minima.
    """

    print("Centro de G:"+ str(distance_measures.center(G)))

    """
    Diametro de un grafo
    The diameter is the maximum eccentricity.
    """
    print("Diametro de G:"+str(distance_measures.diameter(G)))


    """
    Excentricidad de cada Nodo
    The eccentricity of a node v is the maximum distance
    from v to all other nodes in G.
    """
    plt.plot(distance_measures.eccentricity(G).values())
    plt.title("Excentricidad de cada Nodo")
    plt.xlabel("Nodo")
    plt.show();

    """
    Periferia 
    The periphery is the set of nodes with eccentricity equal to the diameter.
    """
    print("Periferia de G:")
    print(distance_measures.periphery(G))

    """
    Radio
    The radius is the minimum eccentricity.

    """

    print("Radio de G:"+str(distance_measures.radius(G)))

    """
    PageRank calcula una clasificacion de los nodos
    en el grafico G en funcion de la estructura de 
    los enlaces entrantes. Originalmente fue disenado
    como un algoritmo para clasificar paginas web.
    """

    plt.plot(link_analysis.pagerank_alg.pagerank(G).values())
    plt.title("Puntaje de cada Nodo")
    plt.xlabel("Nodo")
    plt.show();

    """
    Coeficiente de Small World.
    A graph is commonly classified as small-world if sigma>1.

    """

    print("Coeficiente de Small World: " + str(smallworld.sigma(G)))

    """
    The small-world coefficient (omega) ranges between -1 and 1.
    Values close to 0 means the G features small-world characteristics.
    Values close to -1 means G has a lattice shape whereas values close
    to 1 means G is a random graph.
    """
    print("Omega coeficiente: "+str(smallworld.omega(G)))
Example #5
0
from botdet.data.dataset_botnet import BotnetDataset
from networkx.classes import function as fn

if __name__ == '__main__':
    dataset = BotnetDataset(name='p2p',
                            split='train',
                            graph_format='nx',
                            in_memory=False)
    print(dataset)
    print(len(dataset))
    print(fn.info(dataset[0]))
    breakpoint()
from botdet.data.dataset_botnet import BotnetDataset

import plotly.express as px
import networkx as nx
from networkx.classes.function import info

import random

data = BotnetDataset(name='p2p',
                     split='train',
                     graph_format='nx',
                     in_memory=False)

bots = [n for n, attr in data[0].nodes(data=True) if attr['is_bot'] == 1]
botnet = data[0].subgraph(bots)
print(info(botnet))

seg = range(10)

#print(data[0].graph['num_evils'])

px.line(x=seg,
        y=[data[i].graph['num_evils'] for i in seg],
        labels={
            'x': 'tiempo',
            'y': 'nĂºmero de bots'
        }).show()