Example #1
0
    def build_graph(self, data, score):

        # import biopython, that is needed for the pairwise alignment
        # http://biopython.org/DIST/docs/api/Bio.pairwise2-module.html

        from Bio import pairwise2

        # import a library required to produce gexf graphs
        # https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.readwrite.gexf.write_gexf.html#networkx.readwrite.gexf.write_gexf

        from networkx import nx

        ###Similarity graph
        self.graph = nx.Graph()

        ### pairwise alignement with biopython
        k = 0
        for key in data:  #These loops are made in order to avoid redundant alignement
            k += 1
            for i in range(k, len(data.keys())):
                key_2 = list(data.keys())
                if key != key_2[
                        i]:  # Check with we don't align two identical sequences.
                    print(key_2[i])
                    seq1 = data.get(key)
                    seq2 = data.get(key_2[i])
                    pairwise_result = pairwise2.align.globalxx(seq1, seq2)
                    # Add the edge if score is greater than minimal score
                    #We take only the first ten characters of the identifier.
                    #It could need to be adjusted regarding the identifier length.
                    if pairwise_result[0][2] > score:
                        self.graph.add_edge(key[0:10],
                                            key_2[i][0:10],
                                            weight=int(pairwise_result[0][2]))
                        # Alignement score display
                        print("score = ", pairwise_result[0][2])

        return self.graph
Example #2
0
def draw_small_graph(graph):
    """Draw the graph showing edge weight
    :param graph: graph object to draw
    """

    graph_nx = nx.Graph()
    graph_nx.add_weighted_edges_from(graph.weighted_edges)

    labels = nx.get_edge_attributes(graph_nx, 'weight')
    pos = nx.spring_layout(graph_nx)
    nx.draw_networkx_edge_labels(graph_nx, pos=pos, edge_labels=labels)

    nx.draw(graph_nx,
            pos=pos,
            with_labels=True,
            node_size=10,
            node_color="skyblue",
            node_shape="o",
            alpha=0.5,
            linewidths=30)

    plt.title(graph.name)
    plt.show()
Example #3
0
    def betweenness_centrality_labeling(self, graph, approx=None):
        result = {}
        labeled_graph = nx.Graph(graph)
        if approx is None:
            centrality = list(nx.betweenness_centrality(graph).items())
        else:
            centrality = list(
                nx.betweenness_centrality(graph, k=approx).items())
        sorted_centrality = sorted(centrality,
                                   key=lambda n: n[1],
                                   reverse=True)
        dict_ = {}
        label = 0
        for t in sorted_centrality:
            dict_[t[0]] = label
            label += 1
        nx.set_node_attributes(labeled_graph, dict_, 'labeling')
        ordered_nodes = list(zip(*sorted_centrality))[0]

        result['labeled_graph'] = labeled_graph
        result['sorted_centrality'] = sorted_centrality
        result['ordered_nodes'] = ordered_nodes
        return result
Example #4
0
    def receptive_field_padding(self, normalized_graph):
        """
        Method that ensures uniformity across receptive fields when width or rf_size are too big

        :param normalized_graph: rf_transformed graph to which we add dummy nodes
        :return: uniformized graph
        """

        graph = nx.Graph(normalized_graph)
        keys = [key for key, v in dict(normalized_graph.nodes()).items()]
        labels = [value for key, value in dict(nx.get_node_attributes(normalized_graph, 'labeling')).items()]

        # add extra dummy nodes as long as rf_size is not reached
        #########################################################
        counter = 1
        while len(graph.nodes()) < self.rf_size:
            graph.add_node(max(keys) + counter,
                           attr_name=self.dummy_value,
                           labeling=max(labels) + counter)
            counter += 1
        #########################################################

        return graph
Example #5
0
    def compute_graph_ranking(graph: nx.Graph,
                              vertex: int,
                              original_node_order: dict):
        """
        Method that relabels a graph w.r.t. nodes distances to given root

        :param graph: subgraph to rank
        :param vertex: landmark vertex for the ranking
        :param original_node_order: original ranking
        :return: graph labeled by the new ranking
        """

        labeled_graph = nx.Graph(graph)
        ordered_graph = compute_ranking_distance(graph, vertex)
        labels = nx.get_node_attributes(ordered_graph, 'labeling')

        new_order = relabel_graph(graph=ordered_graph,
                                  original_labeling=labels,
                                  new_labeling=original_node_order)

        nx.set_node_attributes(labeled_graph, new_order, 'labeling')

        return labeled_graph
Example #6
0
    def nauty_graph_automorphism(graph: nx.Graph):
        """
        Graph canonicalization funtion, meant to break timebreakers of the non-injective ranking function

        :param graph: subgraph to be canonicalized
        :return: canonicalized subgraph
        """

        # convert labels to integers to give nauty the node partitions required
        graph_int_labeled = convert_node_labels_to_integers(graph)
        canonicalized_graph = nx.Graph(graph_int_labeled)

        # get canonicalized graph using nauty
        nauty = Graph(len(graph_int_labeled.nodes()), directed=False)
        nauty.set_adjacency_dict({node: list(nbr) for node, nbr in graph_int_labeled.adjacency()})

        labels_dict = nx.get_node_attributes(graph_int_labeled, 'labeling')
        canonical_labeling_order = {k: canonical_labeling(nauty)[k] for k in
                                    range(len(graph_int_labeled.nodes()))}

        canonical_order = relabel_graph(graph_int_labeled, labels_dict, canonical_labeling_order)
        nx.set_node_attributes(canonicalized_graph, canonical_order, 'labeling')

        return canonicalized_graph
Example #7
0
    def canonicalizes(self,subgraph):
        
        st=time.time()

        #wl_subgraph_normalized=self.wl_normalization(subgraph)['labeled_graph'] 
        #g_relabel=convert_node_labels_to_integers(wl_subgraph_normalized)

        g_relabel=convert_node_labels_to_integers(subgraph)
        labeled_graph=nx.Graph(g_relabel)

        nauty_graph=Graph(len(g_relabel.nodes()),directed=False)
        nauty_graph.set_adjacency_dict({n:list(nbrdict) for n,nbrdict in g_relabel.adjacency()})

        labels_dict=nx.get_node_attributes(g_relabel,'labeling')
        canonical_labeling_dict={k:canonical_labeling(nauty_graph)[k] for k in range(len(g_relabel.nodes()))}

        new_ordered_dict=self.rank_label_wrt_dict(g_relabel,labels_dict,canonical_labeling_dict)

        nx.set_node_attributes(labeled_graph,new_ordered_dict,'labeling') 
        
        ed=time.time()
        self.all_times['canonicalizes'].append(ed-st)

        return labeled_graph
"""
Created on Sun Aug  2 22:41:48 2020

@author: eric
"""

#---------------------------------------------------------------------
# Code qui permet de tracer un graphe pour simuler un réeau social
# On ajoute des sommets (node)
# On dessine les arêtes (edge) entre les sommets voulus
#---------------------------------------------------------------------

from networkx import nx, diameter, radius, center
import matplotlib.pyplot as plt

reseau_social = nx.Graph()

reseau_social.add_node('laurent')
reseau_social.add_node('pierre')
reseau_social.add_node('lucie')
reseau_social.add_node('sophie')
reseau_social.add_node('martin')
reseau_social.add_node('jacques')

reseau_social.add_edge('laurent', 'pierre')
reseau_social.add_edge('lucie', 'pierre')
#reseau_social.add_edge('laurent','lucie')
reseau_social.add_edge('sophie', 'lucie')
reseau_social.add_edge('sophie', 'pierre')
reseau_social.add_edge('sophie', 'martin')
reseau_social.add_edge('martin', 'laurent')
Example #9
0
 def test_cycle_undirected_unweighted(self):
     G = nx.Graph()
     G.add_edge(1, 2)
     assert_equal(nx.global_reaching_centrality(G), 0)
Example #10
0
 def test_undirected_weighted_star(self):
     G = nx.Graph()
     G.add_edge(1, 2, weight=1)
     G.add_edge(1, 3, weight=2)
     assert_equal(nx.global_reaching_centrality(G, normalized=False), 0.25)
Example #11
0
 def test_negatively_weighted(self):
     G = nx.Graph()
     G.add_weighted_edges_from([(0, 1, -2), (1, 2, +1)])
     nx.global_reaching_centrality(G, weight='weight')
Example #12
0
from networkx import nx

mapa = nx.Graph()


#   ------------------------------------------ CLASSE PARA CRIACAO DE ARESTA
class Aresta:
    def __init__(self, origem, destino, custo):
        self._origem = origem
        self._destino = destino
        self._custo = custo
        self._feromonio = 0.1

    def getOrigem(self):
        return self._origem

    def getDestino(self):
        return self._destino

    def getCusto(self):
        return self._custo

    def getFeromonio(self):
        return self._feromonio

    def setFeromonio(self, feromonio):
        self._feromonio = feromonio


#   ------------------------------------------ CLASSE PARA CRIACAO DE GRAFO
class Grafo:
Example #13
0
        10: "ber",
        11: "mun",
        12: "mil",
        13: "pra",
        14: "vie",
        15: "zag",
        16: "rom"
    }
    switch_link_matrix = [(1, 2), (1, 4), (2, 3), (2, 5), (3, 4),
                          (3, 6), (4, 7), (4, 9), (5, 6), (5, 10), (6, 7),
                          (6, 11), (7, 8), (8, 9), (8, 12), (10, 11), (10, 13),
                          (11, 12), (11, 14), (12, 16), (13, 14), (14, 15),
                          (15, 16)]
    host_count_per_switch = 1

    topology = nx.Graph()
    nodes = list(switch_names.keys())
    topology.add_nodes_from(nodes)
    topology.add_edges_from(switch_link_matrix)
    result = minimum_spanning_tree(topology)

    no_flood_links = list(set(switch_link_matrix) - set(result.edges))

    # ---------- initialize network  -----------------------------
    #dpid = DPID_BASE
    OpenFlow14Switch = partial(OVSKernelSwitch, protocols=OPENFLOW_PROTOCOL)
    #STPEnabledSwitch = partial(OVSKernelSwitch, protocols=OPENFLOW_PROTOCOL, failMode="standalone", stp=True)

    net = Containernet(ipBase=IP_BASE)
    net.addController("c0",
                      controller=RemoteController,
Example #14
0
 def __init__(self, g_dict=None):
     if g_dict is None:
         g_dict = []
     self._g_dict = g_dict
     self.g_networkx = nx.Graph(g_dict)
Example #15
0
 def test_cycle_undirected_weighted(self):
     G = nx.Graph()
     G.add_edge(1, 2, weight=1)
     grc = nx.global_reaching_centrality
     assert grc(G, normalized=False) == 0
Example #16
0
 def test_undirected_weighted_star(self):
     G = nx.Graph()
     G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2)])
     grc = nx.global_reaching_centrality
     assert grc(G, normalized=False, weight='weight') == 0.375
Example #17
0
def test_convert_to_integers_raise():
    G = nx.Graph()
    with pytest.raises(nx.NetworkXError) as excinfo:
        H = convert_node_labels_to_integers(G, ordering="increasing age")
Example #18
0
 def labeling_to_root(self,graph,vertex):
     labeled_graph=nx.Graph(graph)
     source_path_lengths = nx.single_source_dijkstra_path_length(graph, vertex)
     nx.set_node_attributes(labeled_graph,source_path_lengths,'labeling')
     
     return labeled_graph
def gnp_random_graph_Renana(n ,rand_num, p_1, p_2, p_12, SH_per, seed=None, directed=False):
    """Returns a random graph with two populations
    Parameters
    ----------
    n : int
        The number of nodes.
    rand_num : float
        Location in the parameter space
    p_1 : float
        Probability for edge creation in the SH group // More correct is the distance among close friends.
    p_2 : float
        Probability for edge creation in the NORMAL group.
    p_12 : float
        Probability for edge creation in between the NORMAL and the SH groups.
    SH_per : float
        The amount of SH in the network
    seed : int, optional
        Seed for random number generator (default=None).
    directed : bool, optional (default=False)
        If ``True``, this function returns a directed graph.

    Notes
    -----
    This algorithm runs in `O(n^2)` time.
    References
    ----------
    .. [1] P. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
    .. [2] E. N. Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
    .. [3] R. Peres, The impact of network characteristics on the diffusion
            of innovations, Physica A, (2014)
    """
    if directed:
        G=nx.DiGraph()
    else:
        G=nx.Graph()
    G.name="gnp_random_graph_Renana(%s,%s,%s,%s)"%(n,p_1,p_2,p_12)
    
    SH_size = int(SH_per*n)
    G.add_nodes_from(range(SH_size), group ='SH')
    G.add_nodes_from(range(SH_size,n), group ='Normal')
    color_map = {'SH':'#9B0029', 'Normal':'#003366'}
    colors = [color_map[G._node[node]['group']] for node in G]
             
    if not seed is None:
        np.random.seed(seed)

    if G.is_directed():
        edges=itertools.permutations(range(n),2)
    else:
        edges=itertools.combinations(range(n),2)
            
    for e in edges:
        if (e[0] < SH_size) and (e[1] < SH_size):
            if np.abs(rand_num[e[0]] - rand_num[e[1]])< p_1:    
                G.add_edge(*e)
        if (e[0] >= SH_size) and (e[1] >= SH_size):
            if np.abs(rand_num[e[0]] - rand_num[e[1]]) < p_2:
                G.add_edge(*e)            
        if ((e[0] < SH_size) and (e[1] >= SH_size)) or ((e[0] >= SH_size) and (e[1] < SH_size)):
            if np.random.uniform() < p_12:       
                G.add_edge(*e)        
            
    return G, colors
Example #20
0
            x = x ^ l[i*16 + j]
        denseHash.append(x)
    s = ""
    for c in denseHash:
        s += "{0:02x}".format(c)
    return s

grid = []
for i in xrange(128):
     kh = knotHash("%s-%d" % (inpt, i))
     gridline = []
     for c in kh:
         gridline.extend([int(c) for c in "{0:04b}".format(int(c, 16))])
     grid.append(gridline)

graph = nx.Graph()
for y in xrange(128):
  for x in xrange(128):
    if grid[y][x]:
      graph.add_node((y,x))
for y in xrange(128):
  for x in xrange(128):
    if y > 0:
      if grid[y][x] and grid[y-1][x]:
        graph.add_edge((y,x), (y-1,x))
    if x > 0:
      if grid[y][x] and grid[y][x-1]:
        graph.add_edge((y,x), (y,x-1))

# part 1
print sum(sum(gridline) for gridline in grid)
def main():
    df = pd.read_csv('metrosp_stations.csv')
    df = df.drop(columns=['Unnamed: 0'])
    df.neigh = df.neigh.str[1:-1].str.split(',').tolist()
    df = df.neigh.apply(pd.Series) \
    .merge(df, left_index = True, right_index = True) \
    .drop(["neigh"], axis = 1) \
    .melt(id_vars = ['name','station','lat', 'lon', 'line'], value_name = "onlyNeigh") \
    .drop("variable", axis = 1) \
    .dropna()
    df.to_json('metroSP.json')

    with open('metroSPNotEdited.json') as json_file:
        dataNotEdited = json.load(json_file)

    with open('metroSP.json') as json_file:
        data = json.load(json_file)

    listaDeAdjacencia = {}
    listaEstacoes = []

    # Montando lista de adjacência
    for (key, estacao) in data['station'].items():
        if not listaDeAdjacencia.get(estacao):
            listaDeAdjacencia[estacao] = []
            listaEstacoes.append(estacao)

        listaDeAdjacencia[estacao].append(data['onlyNeigh'][key])

    # Salvando lista de adjacência
    with open('listaAdjacencia.json', 'w') as json_file:
        json.dump(listaDeAdjacencia, json_file)

    while True:
        os.system("clear")
        opcao = menuPrincipal()
        if opcao == '1':
            origem = input("Estação de Origem: ")
            destino = input("Estação de Destino: ")
            menor_caminho = BFS(listaDeAdjacencia, origem, destino)
            print('Esse é o menor caminho para chegar no seu destino:')
            for item in menor_caminho:
                print(
                    recupera_nome(dataNotEdited, item) + ' - ' +
                    recupera_linha(dataNotEdited, item))

            G = nx.Graph()
            labels = {}
            mapaDeCores = []

            for estacao, arestas in listaDeAdjacencia.items():

                corNo = recupera_linha(dataNotEdited, estacao)
                labels[estacao] = recupera_nome(dataNotEdited, estacao)
                G.add_node(estacao)
                # corNo = nx.get_node_attributes(G,'color')
                # corNo = recupera_linha(dataNotEdited, estacao)
                if corNo == '[lilas]':
                    mapaDeCores.append('#8B008B')
                elif corNo == '[verde]':
                    mapaDeCores.append('#006400')
                elif corNo == '[azul]':
                    mapaDeCores.append('#000080')
                elif corNo == '[vermelha]':
                    mapaDeCores.append('#FF0000')
                elif corNo == '[amarela]':
                    mapaDeCores.append('#FF8C00')
                elif corNo == '[prata]':
                    mapaDeCores.append('#1C1C1C')
                else:
                    mapaDeCores.append('#8B4513')

                for aresta in arestas:
                    G.add_edge(estacao, aresta)

            listaNos = G.nodes()
            listaNos = sorted((set(listaNos)))
            posicoes = get_posicoes()

            fig1 = plt.figure('Grafo Principal')
            nx.draw(G,
                    pos=posicoes,
                    nodelist=listaNos,
                    with_labels=True,
                    labels=labels,
                    node_color=mapaDeCores,
                    font_size=6,
                    font_color='white',
                    edge_color='#A0522D')
            fig1.set_facecolor("#00000F")

            fig2 = plt.figure('Subgrafo')
            fig2.set_facecolor("#00000F")
            ax = plt.gca()
            ax.set_facecolor('#00000F')
            subgraph = G.subgraph(menor_caminho)
            nx.draw_networkx(subgraph,
                             pos=posicoes,
                             font_size=8,
                             edge_color='#00CED1',
                             node_color='#00CED1',
                             font_color='white')

            plt.show()
        else:
            os.system("clear")
            print('Encerrando Programa!')
            break
Example #22
0
                [i, data["Address Receiver"][k], data["Transaction_value"][k]])
    connections[i] = {value for value in temp}
    for k in temp:
        temp2 = []
        for p in range(len(data["Address Sender"])):
            if data["Address Sender"][p] == k:
                temp2.append(data["Address Receiver"][p])
                num.append([
                    k, data["Address Receiver"][p],
                    data["Transaction_value"][p]
                ])
        connections[k] = {value for value in temp2}

print("Building Succeeds!")

G = nx.Graph(connections)
pos = nx.spring_layout(G)

colormap = []
for node in G:
    for k in num:
        if k[1] == i:
            if k[2] < 1:
                colormap.append('blue')
            elif k[2] > 20:
                colormap.append('red')
            else:
                colormap.append('green')

nx.draw(G, node_color=colormap, with_labels=True)
plt.show()
"""Graph partioning program from slide 89"""

from dimod import DiscreteQuadraticModel
from dwave.system import LeapHybridDQMSampler
from networkx import nx

lagrange = 10

num_colors = 4
colors = range(num_colors)
dqm = DiscreteQuadraticModel()
G = nx.Graph()
G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (0, 6)])
n_edges = len(G.edges)
for p in G.nodes:
    dqm.add_variable(num_colors, label=p)
for p in G.nodes:
    dqm.set_linear(p, colors)
for p0, p1 in G.edges:
    dqm.set_quadratic(p0, p1, {(c, c): lagrange for c in colors})
for p0, p1 in G.edges:
    dqm.set_quadratic(p0, p1, {(c, c): lagrange for c in colors})
sampler = LeapHybridDQMSampler()
sampleset = sampler.sample_dqm(dqm)
sample = sampleset.first.sample
energy = sampleset.first.energy
valid = True
for edge in G.edges:
    i, j = edge
    if sample[i] == sample[j]:
        valid = False
Example #24
0
    def wl_normalization(self, graph):

        result = {}

        labeled_graph = nx.Graph(graph)

        relabel_dict_ = {}
        graph_node_list = list(graph.nodes())
        for i in range(len(graph_node_list)):
            relabel_dict_[graph_node_list[i]] = i
            i += 1

        inv_relabel_dict_ = {v: k for k, v in relabel_dict_.items()}

        graph_relabel = nx.relabel_nodes(graph, relabel_dict_)

        label_lookup = {}
        label_counter = 0

        l_aux = list(
            nx.get_node_attributes(graph_relabel, 'attr_name').values())
        labels = np.zeros(len(l_aux), dtype=np.int32)
        adjency_list = list([
            list(x[1].keys()) for x in graph_relabel.adjacency()
        ])  #adjency list à l'ancienne comme version 1.0 de networkx

        for j in range(len(l_aux)):
            if not (l_aux[j] in label_lookup):
                label_lookup[l_aux[j]] = label_counter
                labels[j] = label_counter
                label_counter += 1
            else:
                labels[j] = label_lookup[l_aux[j]]
            # labels are associated to a natural number
            # starting with 0.

        new_labels = copy.deepcopy(labels)

        # create an empty lookup table
        label_lookup = {}
        label_counter = 0

        for v in range(len(adjency_list)):
            # form a multiset label of the node v of the i'th graph
            # and convert it to a string

            long_label = np.concatenate(
                (np.array([labels[v]]), np.sort(labels[adjency_list[v]])))
            long_label_string = str(long_label)
            # if the multiset label has not yet occurred, add it to the
            # lookup table and assign a number to it
            if not (long_label_string in label_lookup):
                label_lookup[long_label_string] = label_counter
                new_labels[v] = label_counter
                label_counter += 1
            else:
                new_labels[v] = label_lookup[long_label_string]
        # fill the column for i'th graph in phi
        labels = copy.deepcopy(new_labels)

        dict_ = {inv_relabel_dict_[i]: labels[i] for i in range(len(labels))}

        nx.set_node_attributes(labeled_graph, dict_, 'labeling')

        result['labeled_graph'] = labeled_graph
        result['ordered_nodes'] = [
            x[0] for x in sorted(dict_.items(), key=lambda x: x[1])
        ]

        return result
Example #25
0
 def test_undirected_weighted_star(self):
     G = nx.Graph()
     G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2)])
     centrality = nx.local_reaching_centrality(G, 1, normalized=False, weight='weight')
     assert centrality == 1.5
Example #26
0
 def __init__(self, directed=True):
     self.graph = nx.DiGraph()
     # self.sc_authors = sc_authors
     # self.rc_authors = rc_authors
     if not directed:
         self.graph = nx.Graph()
Example #27
0
 def test_cycle_undirected_unweighted(self):
     G = nx.Graph()
     G.add_edge(1, 2)
     assert nx.global_reaching_centrality(G, weight=None) == 0
Example #28
0
def convert_network(network):
	G = nx.Graph()
	for user, friends in network.items():
		for friend in friends:
			G.add_edge(user, friend)
	return G
Example #29
0
 def test_negatively_weighted(self):
     with pytest.raises(nx.NetworkXError):
         G = nx.Graph()
         G.add_weighted_edges_from([(0, 1, -2), (1, 2, +1)])
         nx.local_reaching_centrality(G, 0, weight='weight')
Example #30
0
    def buildGraphGexf(root, title, data, flt=[]):
        """Convert supplied raw data into GEXF format (e.g. for Gephi)

        GEXF produced by PyGEXF doesn't work with SigmaJS because
        SJS needs coordinates for each node.
        flt is a list of event types to include, if not set everything is
        included.

        Args:
            root (str): TBD
            title (str): unused
            data (list): scan result as list
            flt (list): TBD

        Returns:
            str: TBD
        """

        mapping = SpiderFootHelpers.buildGraphData(data, flt)
        graph = nx.Graph()

        nodelist = dict()
        ncounter = 0
        for pair in mapping:
            (dst, src) = pair
            col = ["0", "0", "0"]

            # Leave out this special case
            if dst == "ROOT" or src == "ROOT":
                continue

            if dst not in nodelist:
                ncounter = ncounter + 1
                if dst in root:
                    col = ["255", "0", "0"]
                graph.node[dst]['viz'] = {
                    'color': {
                        'r': col[0],
                        'g': col[1],
                        'b': col[2]
                    }
                }
                nodelist[dst] = ncounter

            if src not in nodelist:
                ncounter = ncounter + 1
                if src in root:
                    col = ["255", "0", "0"]
                graph.add_node(src)
                graph.node[src]['viz'] = {
                    'color': {
                        'r': col[0],
                        'g': col[1],
                        'b': col[2]
                    }
                }
                nodelist[src] = ncounter

            graph.add_edge(src, dst)

        gexf = GEXFWriter(graph=graph)
        return str(gexf).encode('utf-8')