Example #1
0
def load_cscdata(csc_name, maxlength=None):
    data = nlxio.load_ncs(csc_name)
    sig_data = data['data']
    fs = float(data['sampling_rate'])
    times = data['time']
    if maxlength is not None:
        sig_data = sig_data[:maxlength]
        times = times[:maxlength]
    times = times/1e6
    times = times - times[0]
    times = times
    return sig_data, times, fs
Example #2
0
# coding: utf-8

import neuralynxio
import os
import scipy.io

for filename in os.listdir(os.getcwd()):
    if filename.endswith(".ncs") and filename.startswith("CSC"):
        channelname = filename.split('.')[0]

        rawData = []

        csc = neuralynxio.load_ncs(filename)

        rawData.append(csc['data'])
        header = csc['header']
        samplingRate = float(csc['sampling_rate'])

        scipy.io.savemat('_' + channelname + '_rawData.mat',
                         mdict={
                             'rawData': rawData,
                             'samplingRate': samplingRate
                         })
Example #3
0
"""

import os, mea
import warnings
import numpy as np
import scipy.signal as spsig
import neuralynxio as nlxio
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from detect_peaks import detect_peaks
warnings.filterwarnings('ignore')

for filename in os.listdir(os.getcwd()):
    if 'CSC36' in filename and '.ncs' in filename:
        # load the data
        lfpdata = nlxio.load_ncs(filename)
        eeg_sig = lfpdata['data']
        time = lfpdata['time'] / 1e6  # convert to seconds
        time = time - time[0]
        fs = lfpdata['sampling_rate']
        del lfpdata

        # load the filtered ripple data
        f_ripple = (140, 250)
        filt_rip_sig = mea.get_bandpass_filter_signal(eeg_sig, fs, f_ripple)
        #        mea.plot_lfp(eeg_sig[:fs*1000], filt_rip_sig[:fs*1000], time[:fs*1000])
        # calculate the envelope of filtered data
        filt_rip_env = abs(spsig.hilbert(filt_rip_sig))
        filt_rip_env_zscore = mea.zscore(filt_rip_env)

        # Root mean square (RMS) ripple power calculation
# coding: utf-8

import neuralynxio
import os
import scipy.io

for filename in os.listdir(os.getcwd()):
    if filename.endswith(".ncs")and filename.startswith("CSC"): 
        channelname = filename.split('.')[0]
        
        rawData = []
        
        csc = neuralynxio.load_ncs(filename)
        
        rawData.append(csc['data'])
        header = csc['header']
        samplingRate = float(csc['sampling_rate'])
        
        scipy.io.savemat('_' + channelname + '_rawData.mat', mdict = {'rawData':rawData, 'samplingRate': samplingRate})