Example #1
0
def reposition_wdsneurep(infile, outfile, refpos=PATS_FILE):
    d = nw.filereader_factory('neurep', infile)
    refp = nw.filereader_factory('readl', refpos)
    rpos_l = []
    for w in refp:
        rpos_l.append((w, d[w]))
    nw.filewriter_factory('neurep', outfile, rpos_l)
Example #2
0
def filize_lxcfcts():

    lxcfcts_reps = nw.filereader_factory(
        'neurep',
        pu.get_fn_neurep('n2v2afp', 'nhf20', SYNPATH,
                         'syneurep')['fct_neurep'])
    lxcfcts = nw.filereader_factory(
        'readl', F_SYNFCT
    )  #['lxc/n', 'lxc/v', 'lxc/aj', 'lxc/conj', 'lxc/prep', 'lxc/pron', 'lxc/adv']
    for i in range(len(lxcfcts)):
        lxcf = re.sub("/", "", lxcfcts[i])
        outfile = SYNPATH + lxcf + '.csv'
        d = {lxcfcts[i]: lxcfcts_reps[lxcfcts[i]]}
        nw.filewriter_factory('neurep', outfile, d)
Example #3
0
def extract_neurep_wordlist(fn_neurep, wordlist, fout):
    #    pdb.set_trace()
    allwd_reps = nw.filereader_factory('neurep', fn_neurep)
    d = {}
    for w in wordlist:
        d[w] = allwd_reps[w]
    nw.filewriter_factory('neurep', fout, d)
Example #4
0
def get_entropy_units(filename, entunit_file, actunt=False, inactst=7):
    '''
    >>> ent_u_l = get_entropy_units('pattern.dat')
    '''
    #    pdb.set_trace()
    data = nw.filereader_factory('nowlab', filename)
    ent_u_l = []
    no_units = np.shape(data)[1]
    #SAHAR:
    f_test = open(entunit_file, 'w')
    entunitd_file = entunit_file + '_d'
    f_test2 = open(entunitd_file, 'w')
    u_allz_no = 0
    u_allz_l = []
    for n_u in range(no_units):
        st_u = list(data[:, n_u])
        f_test.write(str(st_u) + '\n')
        hist_st_d = dict([(x, st_u.count(x)) for x in set(st_u)])
        f_test2.write(str(hist_st_d) + '\n')
        if actunt:
            if inactst in hist_st_d:
                del [hist_st_d[inactst]]


#            else:
#                print 'No ', inactst, 'for unit ', n_u, ' in ', hist_st_d
        if not hist_st_d:
            u_allz_no += 1
            u_allz_l.append(n_u)
        ent_u = KLdiv.shannon_entropy(hist_st_d)
        ent_u_l.append(ent_u)
    print 'no of units whose states are all inactive: ', u_allz_no
    #    print 'units no: ', u_allz_l
    f_test.close()
    return ent_u_l
Example #5
0
def convt_base2sform(infile='fncn_normalized_sbjwd_5Nov_10m.txt',
                     outfile='fncn_sform_normalized_sbjwd_5Nov_10m.txt',
                     type_='jntpb',
                     *args,
                     **kwds):
    '''
    >>> nws.convt_base2sform(infile='fncn_normalized_sbjwd_5Nov_10m.txt', outfile='fncn_sform_normalized_sbjwd_5Nov_10m.txt', feats_place=[0,1], cor_place=2)
    >>> nws.convt_base2sform(infile='fncvb_normalized_sbjwd_5Nov_10m.txt', outfile='fncvb_sform_normalized_sbjwd_5Nov_10m.txt', feats_place=[0,1], cor_place=2)
    '''
    root_d = blissplot.get_wbaseform_d()
    sform = root_d.keys()
    bform = root_d.values()
    basefile_d = nw.filereader_factory(type_, infile, *args, **kwds)
    outfile = open(outfile, 'w')
    for k, v in basefile_d.iteritems():
        l = ''
        ws = k.split()
        for w in ws:
            if w in bform:
                w = sform[bform.index(w)]
            l = l + w + '\t'
        if type(v) is list:
            v = [str(i) for i in v]
            stv = ' '.join(v)
        else:
            stv = str(v)
        outfile.write(l + stv + '\n')
Example #6
0
def replc_w_n_jntfile(type_='jntpb_fq0',
                      fn='jntf',
                      fout='out',
                      pat_file='pats_149.txt'):
    '''
    >>> nws.replc_n1_n2_neurepfile()
    '''
    # pdb.set_trace()
    d1 = nw.filereader_factory(type_, fn)
    pats = nw.filereader_factory('readl', pat_file)
    d = {}
    for k, v in d1.iteritems():
        w1, w2 = k.split()
        npr = str(pats.index(w1)) + ' ' + str(pats.index(w2))
        d[npr] = v

    bu.UtilDict().writetofile(d, fout)
Example #7
0
def assign_colorcodes(filename='BLISS_fncwds+factorsyn.txt', cmap='jet'):
    plt.figure()
    fncwds = nw.filereader_factory('readl', filename)
    num = len(fncwds)
    plt.scatter(range(num), [0] * num,
                c=range(num),
                s=30,
                cmap=cmap,
                linewidth=.5)
    plt.xticks(np.arange(num), fncwds, rotation=45)
Example #8
0
def get_corr_wdl(corfile, wdl):

    cor_na_d = nw.filereader_factory('cor', corfile, corr_id_pirmorad=0)
    cor_nas_d = nw.filereader_factory('cor', corfile, corr_id_pirmorad=1)
    f = open(WDL_FILE, 'a')
    f.write(corfile + '\n')
    f.write('word1 word2 Na Nas\n')
    for w in nw.combinations(wdl, 2):
        pair = ' '.join([w[0], w[1]])
        revpair = ' '.join([w[1], w[0]])
        if pair in cor_na_d:
            na = cor_na_d[pair]
            nas = cor_nas_d[pair]
        else:
            na = cor_na_d[revpair]
            nas = cor_nas_d[revpair]
        f.write(pair + ' ' + str(na) + ' ' + str(nas) + '\n')
    f.write('***********\n')
    f.close()
Example #9
0
def create_jntpbfile(fn_pb):
    f1 = 'BLISS_adjs.txt'
    f2 = 'BLISS_nouns_sg.txt'
    f3 = 'BLISS_verbs_sg.txt'
    z = [(f1, f2), (f2, f3), (f3, f1), (f3, f2)]
    fpb = open(fn_pb, 'w')
    for files in z:
        file1 = nw.filereader_factory('readl', files[0])
        file2 = nw.filereader_factory('readl', files[1])
        pb = 1. / (len(file2))
        if (file1 == 'BLISS_verbs_sg.txt'):
            pb = 1. / 36
        for wd1 in file1:
            for wd2 in file2:
                fpb.write(wd1 + '\t' + wd2 + '\t' + str(pb) + '\n')

    fpb.close()
    fout = fn_pb + '_adp2pats'
    replc_w_n_jntfile(fn=fn_pb, type_='jntpb', fout=fout)
Example #10
0
def modify_sparsity_fwds(fn, fn_out):
    fwds = nw.filereader_factory('readl', 'BLISS_fncwds.txt')
    pats = nw.filereader_factory('readl', 'pats_149.txt')
    data = nw.filereader_factory('nowlab', fn)
    fout = open(fn_out, 'w')
    no_flips = 90  # 135 - 45
    idx_l = []
    for idx, item in enumerate(pats):
        if item in fwds:
            idx_l.append(idx)
    for p_no in range(len(pats)):
        p = list(data[p_no, :])
        if p_no in idx_l:
            #            pdb.set_trace()
            idx_actv_units = [idx for idx, item in enumerate(p) if item != 7]
            idx_chosenunts = random.sample(idx_actv_units, no_flips)
            for i in idx_chosenunts:
                p[i] = 7
        p_st = [str(int(i)) for i in p]
        p_st = ' '.join(p_st)
        fout.write(p_st + '\n')
    fout.close()
Example #11
0
def plot_Nas_lxcatswithlxcfcts(sfx='nhf20',
                               path='result/synrep-fsynmlt.1-27Jan12/',
                               neu='syneurep'):
    '''
    nws.plot_Nas_lxcatswithlxcfcts(sfx='nhf20', path='result/synrep-fsynmlt.1-27Jan12/')
    '''
    lxcats = WD_CATS
    lxcats_nm = lxcats
    lxcats_nm_captlz = [i.title() for i in lxcats_nm]
    fn_lxcats = get_fn_lxcats(path, sfx, neu)

    lxcfct1 = nw.filereader_factory(
        'readl', F_SYNFCT
    )  #['lxc/n', 'lxc/v', 'lxc/aj', 'lxc/conj', 'lxc/prep', 'lxc/pron', 'lxc/adv']
    lxcfct = [re.sub("/", "", f) for f in lxcfct1]
    # pdb.set_trace()
    h = open('Nas', 'a')
    h.write('\n**** ' + sfx + ' ' + path + '\n')
    for j in [6]:  #range(len(lxcfct)):
        fn2 = path + lxcfct[j] + '.csv'
        plt.figure()
        avgnas = []
        #        colornames = ['r', 'r', 'b', 'b', 'b', 'r', 'r', 'b']
        #        colornames = ['b', 'b', 'r', 'r', 'b', 'b', 'b', [.1,.5,1]]
        #        colornames = ['b', 'b', 'b', 'b', 'r', 'b', 'b', 'c']
        #        colornames = ['b', 'b', 'b', 'b', 'b', 'b', 'b', [0.4,.6,.9]]
        #        colornames = ['b', 'b', 'b', 'b', 'b', 'b', 'b', 'c']
        #        colornames = ['b', 'b', 'b', 'b', 'b', 'b', 'b', [.1,.5,1]]
        colornames = [
            'b', 'b', 'b', 'b', [.5, .8, .9], 'b', 'b', [0.4, .6, .9]
        ]
        for i in range(len(lxcats)):
            fn1 = fn_lxcats[
                i]  #pu.get_fn_neurep(lxcats[i],sfx,path,neu=neu)['fn']
            print lxcfct[j] + ", " + lxcats[i]
            fncor = path + lxcats[i] + '_' + lxcfct[j] + sfx + '_corr.csv'
            #pdb.set_trace()
            nw.get_corr_pirmoradfeats(fn1, True, fn2, fncor)
            avgnas.append(get_avgNas(fncor, 1))
        avgnas_s = [str(int(round(av))) for av in avgnas]
        #        pdb.set_trace()
        h.write(lxcats[i] + ': ' + '  '.join(avgnas_s) + '\n')
        plt.bar(range(len(lxcats)), avgnas, color=colornames)
        plt.xticks(np.arange(len(lxcats)) + .4, lxcats_nm_captlz, fontsize=26)
        #plt.title('avg Nas between ' + lxcfct1[j] + ' and lxcats (' + sfx + ')')
        plt.yticks(range(0, 91, 10), fontsize=20)
        #plt.ylim([0,90])
        plt.ylabel('<Nas>', fontsize=30)
        plt.savefig(path + 'avgNas_' + lxcfct[j] + '_' + sfx + '.png')
    h.close()
Example #12
0
def avgsparsity(filename):
    d = nw.filereader_factory('neurep', filename)
    sparsity = []
    no_wds = len(d)
    for w, neu in d.iteritems():
        no_units = float(len(neu))
        neu_arr = np.array(neu)
        no_active_units = len(neu_arr[neu_arr > 0])
        sp = no_active_units / no_units
        #        print w, ':', sp
        sparsity.append(sp)


#    print sparsity
#    print sort(sparsity)
    return np.mean(sparsity)
Example #13
0
def get_avgNas_elefiles(f='pattern.dat',
                        corr_id_pirmorad=1,
                        path='result/randcor-16:00-28May12/',
                        form='scatter',
                        save_fig=1,
                        new_fig=1):
    fn = path + f
    #    pdb.set_trace()
    data = nw.filereader_factory('nowlab', fn)
    Nas_l = []
    Na_l = []
    Nad_l = []
    no_pats = np.shape(data)[0]
    no_units = np.shape(data)[1]
    for n_p1 in range(no_pats):
        p1 = list(data[n_p1, :])
        for n_p2 in range(n_p1 + 1, no_pats):
            p2 = list(data[n_p2, :])
            nas = 0
            na = 0
            for n_u in range(no_units):
                if ((p1[n_u] != 7) and (p2[n_u] != 7)):
                    na = na + 1
                    if (p1[n_u] == p2[n_u]):
                        nas = nas + 1
            Nas_l.append(nas)
            Nad_l.append(na - nas)
            Na_l.append(na)
    print 'avg(Nas):' + str(np.mean(Nas_l))
    print 'std(Nas):' + str(np.std(Nas_l))
    print 'avg(Nad):' + str(np.mean(Nad_l))
    print 'std(Nad):' + str(np.std(Nad_l))
    print 'avg(Na):' + str(np.mean(Na_l))
    print 'std(Na):' + str(np.std(Na_l))

    sfx = ''
    dist_l = []
    if corr_id_pirmorad == 0:
        dist_l = Na_l
        sfx = 'Na'
    elif corr_id_pirmorad == 1:
        dist_l = Nas_l
        sfx = 'Nas'
    elif corr_id_pirmorad == 2:
        dist_l = Nad_l
        sfx = 'Nad'

    mean, std = plot_freq_dist(dist_l,
                               form=form,
                               xlab=sfx,
                               save_fig=save_fig,
                               new_fig=new_fig)
    #    plt.savefig(path + 'Nas_' + f +'.png')

    # fit an exponential function
    #    logNas_fq_srt = [np.log(nas) for nas in Nas_fq_srt]
    #    z= polyfit(Nas_srt, logNas_fq_srt, 1)
    #    print 'exp values:', z
    #    z2=[(np.exp(z[1])*np.exp(z[0]*i)) for i in Nas_srt]
    #    plt.figure();plt.plot(Nas_srt, z2)
    #    mean, std = plot_freq_dist(Na_l, title='Na',save_fig=save_fig,new_fig=new_fig)
    if save_fig:
        plt.savefig(path + 'Nas_' + f + '.png')
    return mean, std