Example #1
0
def read_network(fn):
    with open(fn, 'r') as f:
        s = f.read()
        j = json.loads(s)
        net = neuro.Network()
        net.from_json(j)
    return net
Example #2
0
    def setup_network(self):
        self.net = neuro.Network()
        self.net.set_properties(self.proc.get_properties())

        self.start_outputs = 0

        neurons = []
        neurons.append([])
        #print("Here", self.threshold) 
        # Create neurons
        total = 0
        for i in range(1,len(self.neurons_per_layer)):
            neurons.append([])
            for j in range(self.neurons_per_layer[i]):
                node = self.net.add_node(j+total)
                neurons[i].append(j+total)
                self.net.add_input(j+total)
                self.net.add_output(j+total)
                #print("Bad here", self.threshold)
                node.set("Threshold", self.threshold)
                
            total += self.neurons_per_layer[i]
            if (i != len(self.neurons_per_layer)-1):
                self.start_outputs += self.neurons_per_layer[i] 

        self.total_neurons = total

        # Create synapses 
        total = 0

        for i in range(1,len(self.neurons_per_layer)-1):
            for j in range(self.neurons_per_layer[i]):
                #print(self.weights[i-1])
                for k in range(self.neurons_per_layer[i+1]):
                    w = self.weights[i-1][j][k]
                    if (w != 0):
                        edge = self.net.add_edge(neurons[i][j], neurons[i+1][k])
                    #edge = self.net.add_edge(j+total, k+total+self.neurons_per_layer[i])
                    edge.set("Weight", w)
                    edge.set("Delay", 1)
            total+= self.neurons_per_layer[i]
                
        # Create bias neurons/synapses
        total = 0 

        intermediate_total = self.neurons_per_layer[1]

        bias_id = self.total_neurons
        self.bias_neuron = self.net.add_node(bias_id) 
        self.net.add_input(bias_id)
        self.bias_neuron.set("Threshold", max(self.min_threshold, 0)) 
        for i in range(2, len(self.neurons_per_layer)):
            #print(self.biases[i-2])
            for j in range(self.neurons_per_layer[i]):
                edge = self.net.add_edge(bias_id, neurons[i][j])
                edge.set("Weight", self.biases[i-2][j])
                edge.set("Delay", i-1) 
                
            total += self.neurons_per_layer[i] 
            intermediate_total += self.neurons_per_layer[i]
Example #3
0
 def read_network(self, fn=None):
     if (fn == None):
         fn = self.network_filename
     with open(fn, 'r') as f:
         s = f.read()
         j = json.loads(s)
         net = neuro.Network()
         net.from_json(j)
     return net
Example #4
0
def make_feed_forward(props, layer_size, seed=0):
    moa = neuro.MOA()
    moa.seed(seed)
    net = neuro.Network()
    net.set_properties(props)
    if (len(layer_size) < 2):
        raise ValueError(
            "make_feed_forward requires layers to have at least an input layer and an output layer"
        )

    num_inputs = layer_size[0]
    num_outputs = layer_size[-1]

    layers = []

    layers.append([])
    for i in range(num_inputs):
        node = net.add_node(i)
        net.randomize_node_properties(moa, node)
        net.add_input(i)
        layers[0].append(i)

    current_index = num_inputs + num_outputs

    for i in range(1, len(layer_size) - 1):
        layers.append([])
        for j in range(layer_size[i]):
            node = net.add_node(current_index)
            net.randomize_node_properties(moa, node)
            layers[-1].append(current_index)
            current_index += 1

    layers.append([])
    for i in range(num_outputs):
        node = net.add_node(num_inputs + i)
        net.randomize_node_properties(moa, node)
        net.add_output(num_inputs + i)
        layers[-1].append(num_inputs + i)

    for i in range(len(layers) - 1):
        for j in range(len(layers[i])):
            for k in range(len(layers[i + 1])):
                edge = net.add_edge(layers[i][j], layers[i + 1][k])
                net.randomize_edge_properties(moa, edge)
    return net
Example #5
0
def generate_template_network(properties, n_inputs, n_outputs, seed=0):
    net = neuro.Network()
    net.set_properties(properties)

    moa = neuro.MOA()
    moa.seed(seed)

    for i in range(n_inputs):
        node = net.add_node(i)
        net.add_input(i)
        net.randomize_node_properties(moa, node)

    for i in range(n_outputs):
        node = net.add_node(i + n_inputs)
        net.add_output(i + n_inputs)
        net.randomize_node_properties(moa, node)

    return net
Example #6
0
    def initialize_network(self, proc, seed, num_hidden, prob_edge):
        properties = proc.get_properties()
        net = neuro.Network()
        net.set_properties(properties)

        moa = neuro.MOA()
        moa.seed(seed)

        for i in range(self.n_inputs):
            node = net.add_node(i)
            net.add_input(i)
            net.randomize_node_properties(moa, node)

        for i in range(self.n_outputs):
            node = net.add_node(i + self.n_inputs)
            net.add_output(i + self.n_inputs)
            net.randomize_node_properties(moa, node)

        total = self.n_inputs + self.n_outputs

        for i in range(num_hidden):
            node = net.add_node(i + total)
            net.randomize_node_properties(moa, node)

        total += num_hidden

        A = scipy.sparse.random(total,
                                total,
                                density=prob_edge,
                                random_state=seed).toarray()
        for i in range(total):
            for j in range(total):
                if (A[i][j] != 0 and i != j):
                    edge = net.add_edge(i, j)
                    net.randomize_edge_properties(moa, edge)

        return net