resolution=0.1, stim_duration=1, ITImodel='exponential', ITImin=1, ITImean=2, ITImax=5, confoundorder=3, # this cannot be 0 hardprob=True, ) # optimize the design for detection efficiency only using GA POP_GA = optimisation(experiment=EXP, weights=[0, 0.5, 0.5, 0], preruncycles=2, cycles=cycles, seed=1, outdes=5, I=10, folder='/tmp/', optimisation='GA', R=[0.5, 0.5, 0.0]) POP_GA.optimise() # print the best model score print("Score: %s " % POP_GA.optima[::-1][0]) print("N trials: %d " % len(POP_GA.bestdesign.onsets)) # Let's look at the resulting experimental designs. # this plots the columns of the X matrix convolved with the HRF plt.figure(figsize=(10, 7))
order = neurodesign.generate.order(nstim=4, ntrials=100, probabilities=[0.25, 0.25, 0.25, 0.25], ordertype='random', seed=1234) print(order[:10]) Counter(order) iti, lam = neurodesign.generate.iti(ntrials=40, model='exponential', min=2, mean=3, max=8, resolution=0.1, seed=2134) print(iti[:10]) print("mean ITI: %s \n\ min ITI: %s \n\ max ITI: %s" % (round(sum(iti) / len(iti), 2), round(min(iti), 2), round(max(iti), 2))) POP = neurodesign.optimisation(experiment=EXP, weights=[0, 0.5, 0.25, 0.25], preruncycles=10, cycles=100, folder="./", seed=100) POP.optimise()
stim_duration=1, t_pre = 0, t_post = 2, restnum=0, restdur=0, ITImodel = "exponential", ITImin = 1, ITImean = 2, ITImax=4 ) POP = optimisation( experiment=EXP, weights=[0,0.5,0.25,0.25], preruncycles = 10, cycles = 10, seed=1, outdes=5, folder='/Users/Joke/' ) ######################### # run natural selection # ######################### POP.optimise() POP.download() POP.evaluate() ################ # step by step #
P=[0.25, 0.25, 0.25], C=[[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, -1]], n_stimuli=3, rho=0.3, resolution=0.1, stim_duration=1, ITImodel="exponential", ITImin=0.3, ITImean=1, ITImax=4) # In[3]: POP_Max = optimisation(experiment=EXP, weights=[0, 0.5, 0.25, 0.25], preruncycles=cycles, cycles=2, optimisation='GA') POP_Max.optimise() # In[4]: EXP.FeMax = POP_Max.exp.FeMax EXP.FdMax = POP_Max.exp.FdMax # Below we define two populations of designs. We will optimise one using the genetic algorithm, and the other using randomly drawn designs. # # We optimise for statistical power (weights = [0,1,0,0]). We run 100 cycles. # In[5]:
rho=0.3, resolution=0.1, stim_duration=1, t_pre=0, t_post=2, restnum=0, restdur=0, ITImodel="exponential", ITImin=1, ITImean=2, ITImax=4) POP = optimisation(experiment=EXP, weights=[0, 0.5, 0.25, 0.25], preruncycles=10, cycles=10, seed=1, outdes=5, folder=os.getcwd()) ######################### # run natural selection # ######################### POP.optimise() POP.download() POP.evaluate() ################ # step by step # ################