Example #1
0
def dataset_load(args, device):
    if systems[args.system] == 'emulator':
        dataset = EmulatorDataset(system=args.system, nsim=args.nsim,
                                  norm=args.norm, nsteps=args.nsteps, device=device, savedir=args.savedir,
                                  name='closedloop')
    else:
        dataset = FileDataset(system=args.system, nsim=args.nsim,
                              norm=args.norm, nsteps=args.nsteps, device=device, savedir=args.savedir,
                              name='closedloop')
        ny = args.ny
        if not ny == dataset.data['Y'].shape[1]:
            new_sequences = {'Y': dataset.data['Y'][:, :1]}
            dataset.add_data(new_sequences, overwrite=True)
        dataset.min_max_norms['Ymin'] = dataset.min_max_norms['Ymin'][0]
        dataset.min_max_norms['Ymax'] = dataset.min_max_norms['Ymax'][0]

        nsim = dataset.data['Y'].shape[0]
        nu = dataset.data['U'].shape[1]
        # new_sequences = {'Y_max': 0.8 * np.ones([nsim, 1]), 'Y_min': 0.2 * np.ones([nsim, 1]),
        new_sequences = {'Y_max': psl.Periodic(nx=1, nsim=nsim, numPeriods=30, xmax=0.9, xmin=0.6),
                         'Y_min': psl.Periodic(nx=1, nsim=nsim, numPeriods=25, xmax=0.4, xmin=0.1),
                         'U_max': np.ones([nsim, nu]), 'U_min': np.zeros([nsim, nu]),
                         # 'R': psl.Steps(nx=1, nsim=nsim, randsteps=60, xmax=0.7, xmin=0.3),
                         'R': psl.Periodic(nx=1, nsim=nsim, numPeriods=20, xmax=0.8, xmin=0.2)
                         # 'Y_ctrl_': psl.RandomWalk(nx=ny, nsim=nsim, xmax=[1.0] * ny, xmin=[0.0] * ny, sigma=0.05)}
                         #'Y_ctrl_': psl.WhiteNoise(nx=ny, nsim=nsim, xmax=[1.0] * ny, xmin=[0.0] * ny)}
                         }
        dataset.add_data(new_sequences)
        # dataset.dims['Rf'] = (9000, 1)
    return dataset
Example #2
0
def dataset_load(args, device):
    if systems[args.system] == 'emulator':
        dataset = EmulatorDataset(system=args.system, nsim=args.nsim,
                                  norm=args.norm, nsteps=args.nsteps, device=device, savedir=args.savedir)
    else:
        dataset = FileDataset(system=args.system, nsim=args.nsim,
                              norm=args.norm, nsteps=args.nsteps, device=device, savedir=args.savedir)
    return dataset
Example #3
0
def dataset_load(args, device):
    if systems[args.system] == 'emulator':
        dataset = EmulatorDataset(system=args.system, nsim=args.nsim,
                                  norm=args.norm, nsteps=args.nsteps, device=device, savedir=args.savedir)
    else:
        dataset = FileDataset(system=args.system, nsim=args.nsim,
                              norm=args.norm, nsteps=args.nsteps, device=device, savedir=args.savedir)
        new_sequences = {'Y': dataset.data['Y'][:, :1]}
        dataset.min_max_norms['Ymin'] = dataset.min_max_norms['Ymin'][0]
        dataset.min_max_norms['Ymax'] = dataset.min_max_norms['Ymax'][0]
        dataset.add_data(new_sequences, overwrite=True)
    return dataset
Example #4
0
def dataset_load(args, device):
    if systems[args.system] == 'emulator':
        dataset = EmulatorDataset(system=args.system,
                                  nsim=args.nsim,
                                  norm=args.norm,
                                  nsteps=args.nsteps,
                                  device=device,
                                  savedir=args.savedir,
                                  name='closedloop')
    else:
        dataset = FileDataset(system=args.system,
                              nsim=args.nsim,
                              norm=args.norm,
                              nsteps=args.nsteps,
                              device=device,
                              savedir=args.savedir,
                              name='closedloop')
    nsim, ny = dataset.data['Y'].shape
    nu = dataset.data['U'].shape[1]
    new_sequences = {
        'Y_max':
        0.8 * np.ones([nsim, ny]),
        'Y_min':
        0.2 * np.ones([nsim, ny]),
        'U_max':
        np.ones([nsim, nu]),
        'U_min':
        np.zeros([nsim, nu]),
        'R':
        psl.Steps(nx=1, nsim=nsim, randsteps=30, xmax=1, xmin=0),
        # 'R': psl.Periodic(nx=1, nsim=nsim, numPeriods=12, xmax=1, xmin=0),
        'Y_ctrl_':
        psl.WhiteNoise(nx=ny, nsim=nsim, xmax=[1.0] * ny, xmin=[0.0] * ny)
    }
    dataset.add_data(new_sequences)
    return dataset
Example #5
0
            nsim) + SG2.sequence_generator(nsim)


if __name__ == '__main__':

    model_file = './datasets/Flexy_air/best_model_flexy1.pth'
    load_model = torch.load(model_file,
                            pickle_module=dill,
                            map_location=torch.device('cpu'))
    estimator = load_model.components[0]
    dynamics = load_model.components[1]
    nsteps = 32
    ny = load_model.components[1].fy.out_features
    dataset = FileDataset(system='flexy_air',
                          nsim=10000,
                          norm=['U', 'D', 'Y'],
                          nsteps=nsteps,
                          device='cpu')
    dataset.min_max_norms['Ymin'] = dataset.min_max_norms['Ymin'][0]
    dataset.min_max_norms['Ymax'] = dataset.min_max_norms['Ymax'][0]
    nsim = dataset.data['Y'].shape[0]
    nu = dataset.data['U'].shape[1]
    new_sequences = {
        'Y_max': 0.8 * np.ones([nsim, 1]),
        'Y_min': 0.2 * np.ones([nsim, 1]),
        'U_max': np.ones([nsim, nu]),
        'U_min': np.zeros([nsim, nu]),
        'R': psl.Periodic(nx=1, nsim=nsim, numPeriods=20, xmax=0.7, xmin=0.3)
    }
    dataset.add_data(new_sequences)
    dynamics_generator = SignalGeneratorDynamics(dynamics,
Example #6
0
                D.append(d) if d is not None else None
                R.append(r) if r is not None else None
                Ymin.append(ymin) if ymin is not None else None
                Ymax.append(ymax) if ymax is not None else None
                Umin.append(umin) if umin is not None else None
                Umax.append(umax) if umax is not None else None

        return {
            'Y': np.concatenate(Y, 0),
            'X': np.concatenate(X, 0),
            'U': np.concatenate(U, 0),
            'D': np.concatenate(D, 0) if D else None,
            'R': np.concatenate(R, 0) if R else None,
            'Ymin': np.concatenate(Ymin, 0) if Ymin else None,
            'Ymax': np.concatenate(Ymax, 0) if Ymax else None,
            'Umin': np.concatenate(Umin, 0) if Umin else None,
            'Umax': np.concatenate(Umax, 0) if Umax else None
        }


if __name__ == '__main__':

    systems = {'Reno_full': 'emulator'}
    for system, data_type in systems.items():
        if data_type == 'emulator':
            dataset = EmulatorDataset(system)
        elif data_type == 'datafile':
            dataset = FileDataset(system)
    nsim, ny = dataset.data['Y'].shape
    nu = dataset.data['U'].shape[1]
Example #7
0
                              pickle_module=dill)
        policy = torch.load('../datasets/Flexy_air/device_test_models/' +
                            model + '/best_policy_flexy.pth',
                            pickle_module=dill)
        estimator = torch.load('../datasets/Flexy_air/device_test_models/' +
                               model + '/best_estimator_flexy.pth',
                               pickle_module=dill)
        estimator.input_keys[0] = 'Yp'
        policy.input_keys[0] = 'Yp'

    HW_emulator = Simulator(estimator=estimator, dynamics=dynamics)

    # dataset
    nsim = 3000
    dataset = FileDataset(system='flexy_air',
                          nsim=nsim,
                          norm=['U', 'D', 'Y'],
                          nsteps=estimator.nsteps)
    ny = 1
    nu = 1
    nsteps = policy.nsteps

    R = {
        'steps':
        psl.Steps(nx=1, nsim=nsim, randsteps=30, xmax=0.7, xmin=0.3),
        'periodic':
        psl.Periodic(nx=1, nsim=nsim, numPeriods=20, xmax=0.7, xmin=0.3)
    }[args.ref_type]

    if args.dynamic_constraints:
        bounds_reference = {
            'Y_max':
Example #8
0
                            pickle_module=dill)
        estimator = torch.load('../datasets/Flexy_air/device_test_models/' +
                               model + '/best_estimator_flexy.pth',
                               pickle_module=dill)
        estimator.input_keys[0] = 'Yp'
        policy.input_keys[0] = 'Yp'

    # temporary fix to be compatible with latest model change
    dynamics.fyu = None

    HW_emulator = Simulator(estimator=estimator, dynamics=dynamics)

    # dataset
    nsim = 9000
    dataset = FileDataset(system='flexy_air',
                          nsim=nsim,
                          norm=['U', 'D', 'Y'],
                          nsteps=estimator.nsteps)
    ny = 1
    nu = 1
    nsteps = policy.nsteps

    # mean the disturbance
    disturb_static = 0.44
    # dataset.data['D'] = np.mean(dataset.data['D']) * np.ones((dataset.data['D']).shape)
    dataset.data['D'] = disturb_static * np.ones((dataset.data['D']).shape)

    # list(np.random.random(10))
    R = {
        'static':
        0.5 * np.ones([nsim, 1]),
        # 'spline': psl.SplineSignal(nsim=nsim, values=[0.3, 0.7, 0.6, 0.8, 0.5, 0.7, 0.4, 0.75, 0.3]).reshape(nsim, 1),