Example #1
0
    def load_morpho(self, filepath):
        """
        :param filepath:
            swc file path
        """
        if not path.exists(filepath):
            raise FileNotFoundError(filepath)

        # SWC
        fileformat = filepath.split('.')[-1]
        if fileformat == 'swc':
            morpho = h.Import3d_SWC_read()
        # Neurolucida
        elif fileformat == 'asc':
            morpho = h.Import3d_Neurolucida3()
        else:
            raise Exception('file format `%s` not recognized' % filepath)

        self.all = []
        morpho.input(filepath)
        i3d = h.Import3d_GUI(morpho, 0)
        i3d.instantiate(self)

        for hoc_sec in self.all:
            name = hoc_sec.name().split('.')[-1]  # eg. name="dend[19]"
            if len(self.filter_secs(name)) > 0:
                raise LookupError(
                    "The name '%s' is already taken by another section of the cell: '%s' of type: '%s'."
                    % (name, self.name, self.__class__.__name__))
            sec = Sec(hoc_sec, cell=self, name=name)
            self.secs.append(sec)

        del self.all
Example #2
0
    def build_morphology(self):
        """
        Loads a 3D morphology of the neuron
        """
        # Load hoc routines to import 3D morphologies
        h.load_file('stdlib.hoc')
        h.load_file("import3d.hoc")
        cell = h.Import3d_SWC_read()  # We have a .swc morphology file
        #cell = h.Import3d_Neurolucida3() # We have an .asc morphology file

        # Read the file and creates automatically section.connect(parent) statements
        cell.input('Pyr_01.swc')

        # Instantiate morphology for simulation and
        # execute the connect statements and loads the cell into h scope
        self.importedcell = h.Import3d_GUI(cell, 0)
        self.importedcell.instantiate(None)

        # Create python lists from the morphology with the different sections: soma, dend, apic and axon
        self.soma = []
        self.dend = []
        self.apic = []
        self.axon = []  # for the moment we will forget about the axon
        self.all = []
        for sec in h.allsec():
            if 'soma' in sec.name():
                self.soma.append(sec)
            if 'dend' in sec.name():
                self.dend.append(sec)
            if 'apic' in sec.name():
                self.apic.append(sec)
            if 'axon' in sec.name():
                self.axon.append(sec)
Example #3
0
def load_morphology(filename):
    h = get_h()
    swc = h.Import3d_SWC_read()
    swc.input(str(filename))
    imprt = h.Import3d_GUI(swc, 0)
    h("objref this")
    imprt.instantiate(h.this)
def initialize_neuron(swc_path, file_paths):
    h.load_file("stdgui.hoc")
    h.load_file("import3d.hoc")

    swc = h.Import3d_SWC_read()
    swc.input(swc_path)
    imprt = h.Import3d_GUI(swc, 0)
    h("objref this")
    imprt.instantiate(h.this)

    print file_paths

    for sec in h.allsec():
        if sec.name().startswith("axon"):
            h.delete_section(sec=sec)

    axon = h.Section()
    axon.L = 60
    axon.diam = 1
    axon.connect(h.soma[0], 0.5, 0)

    h.define_shape()

    for sec in h.allsec():
        sec.insert('pas')
        for seg in sec:
            seg.pas.e = 0

    for file_path in file_paths:
        h.load_file(file_path.encode("ascii", "ignore"))
Example #5
0
 def __init__(self, morph):
     morph = str(morph)
     self.axon = []
     cell = h.Import3d_Neurolucida3()
     cell.input(morph)
     i3d = h.Import3d_GUI(cell, 0)
     i3d.instantiate(self)
     self.add_axon()
     self.init_once()
Example #6
0
def import_swc_cell(path):

    morph = h.Import3d_SWC_read()
    morph.input(path)

    i3d = h.Import3d_GUI(morph, 0)
    i3d.instantiate(h.nil)

    return i3d
    def load_morpho(self, filepath, seg_per_L_um=1.0, add_const_segs=11):
        """
        :param filepath:
            swc file path
        :param seg_per_L_um:
            how many segments per single um of L, Length.  Can be < 1. None is 0.
        :param add_const_segs:
            how many segments have each section by default.
            With each um of L this number will be increased by seg_per_L_um
        """
        if not path.exists(filepath):
            raise FileNotFoundError()

        # SWC
        fileformat = filepath.split('.')[-1]
        if fileformat == 'swc':
            morpho = h.Import3d_SWC_read()
        # Neurolucida
        elif fileformat == 'asc':
            morpho = h.Import3d_Neurolucida3()
        else:
            raise Exception('file format `%s` not recognized' % filepath)

        morpho.input(filepath)
        h.Import3d_GUI(morpho, 0)
        i3d = h.Import3d_GUI(morpho, 0)
        i3d.instantiate(self)

        # add all SWC sections to self.secs; self.all is defined by SWC import
        new_secs = {}
        for sec in self.all:
            name = sec.name().split('.')[-1]  # eg. name="dend[19]"
            new_secs[name] = sec

        # change segment number based on seg_per_L_um and add_const_segs
        for sec in new_secs.values():
            add = int(sec.L * seg_per_L_um) if seg_per_L_um is not None else 0
            sec.nseg = add_const_segs + add

        self.secs.update(new_secs)
        del self.all
Example #8
0
def create_morph(swc_file, template):
    h.load_file("import3d.hoc")
    h.load_file("nrngui.hoc")
    h("objref cell, tobj")
    h.load_file(template + ".hoc")
    h.execute("cell = new " + template + "()")  #replace
    nl = h.Import3d_SWC_read()
    nl.quiet = 1
    nl.input(swc_file)
    imprt = h.Import3d_GUI(nl, 0)
    imprt.instantiate(h.cell)
    return h.cell
Example #9
0
def set_morphology(hobj, morph_file):
    """Set morphology for the cell from a swc

    :param hobj: NEURON's cell object
    :param morph_file: name of swc file containing 3d coordinates of morphology
    """
    swc = h.Import3d_SWC_read()
    swc.quiet = True
    swc.input(str(morph_file))
    imprt = h.Import3d_GUI(swc, 0)
    imprt.quiet = True
    imprt.instantiate(hobj)
Example #10
0
def func2map(i):
    cell = h.Import3d_SWC_read()
    print(len(nfs))
    print(i)
    morphology_filename = nfs[i]
    cell = h.Import3d_SWC_read()
    cell.input(morphology_filename)
    i3d = h.Import3d_GUI(cell, 0)
    i3d.instantiate(None)
    file_name = str(nfs[i]) + str('.wrl')
    print(file_name)
    ctng(show=False, magnification=200, file_name=file_name)
    mlab.savefig(str(nfs[i]) + '.wrl')
Example #11
0
def swc2morph(swc_file: str):
    """
    Generate morph sectioning data from .swc file.
    """
    if HAS_NEURON:
        h.load_file('stdlib.hoc')
        h.load_file('import3d.hoc')

        cell = h.Import3d_SWC_read()
        cell.input(swc_file)

        i3d = h.Import3d_GUI(cell, 0)
        i3d.instantiate(None)
        return neuron2morph(h)

    else:
        print("NEURON module is not available.")
Example #12
0
def create_model(model_name, morph_file):
    h("objref cell, tobj")
    morph_file = "../morphs/" + morph_file
    model_path = "../PassiveModels/"
    h.load_file(model_path + model_name + ".hoc")
    h.execute("cell = new " + model_name + "()")  #replace?
    nl = h.Import3d_Neurolucida3()
    nl.quiet = 1
    nl.input(morph_file)
    imprt = h.Import3d_GUI(nl, 0)
    imprt.instantiate(h.cell)
    cell = h.cell
    cell.geom_nseg()
    cell.delete_axon()
    cell.biophys()

    return cell
Example #13
0
def mkswc(swc_contents):
  f = open("temp.tmp", "w")
  f.write(swc_contents)
  f.close()
  swc = h.Import3d_SWC_read()
  swc.input("temp.tmp")
  ig = h.Import3d_GUI(swc)
  ig.box.unmap()
  h.doNotify()
  ig.box.map("Import3d", 650, 200, -1, -1)
  h.doNotify()
  ig.instantiate(None)

  print (swc_contents)
  h.topology()
  print (secinfo())
  print ("\n\n\n")
  return ig
Example #14
0
def swc2morph(swc_file):
    """
    Generate morph sectioning data from swc file.
    """

    from neuron import h
    h.load_file('stdlib.hoc')
    h.load_file('import3d.hoc')

    cell = h.Import3d_SWC_read()
    cell.input(swc_file)

    i3d = h.Import3d_GUI(cell, 0)
    i3d.instantiate(None)

    sections = {}

    for sec in h.allsec():
        sections[sec.name()] = {}
        sections[sec.name()]["name"] = sec.name()
        sr = h.SectionRef(sec=sec)
        if sr.has_parent():
            parent = sr.parent.name()
        else:
            parent = None
        sections[sec.name()]["parent"] = parent

        children = []
        for child in sr.child:
            children.append(child.name())

        sections[sec.name()]["children"] = children
        x = []
        y = []
        z = []
        d = []
        n3d = int(h.n3d())
        sections[sec.name()]["points"] = []
        for i in range(n3d):
            sections[sec.name()]["points"].append(
                [h.x3d(i), h.y3d(i), h.z3d(i),
                 h.diam3d(i)])
    return sections
Example #15
0
    def _load_morphology(self, Jonas_cell):
        ''' internal function: loads morphology and creates section lists'''
        fileEnding = self.morphology.split('.')[-1]
        if fileEnding == 'hoc':
            h.load_file(1, self.morphology)
        else:
            h('objref this')  # why do i need this?
            if fileEnding == 'swc':
                Import = h.Import3d_SWC_read()
                Import.input(self.morphology)
                imprt = h.Import3d_GUI(Import, 0)
            imprt.instantiate(h.this)
        h.define_shape()  # not sure what this does either

        # set up section names: You need to clarify differences between h.allsec(), h.SectionList() - just makes a new #sectionlist - to do with if have multple cells?
        self.all_section_names = []
        self.sec_list = h.SectionList()
        self.nsec = 0
        self.dendrites = h.SectionList(
        )  # maybe these should be h.SectionList()? rather than python lists
        self.axon = h.SectionList()
        self.soma = h.SectionList()
        self.root = 'none'

        for sec in h.allsec():
            self.all_section_names.append(sec.name())
            self.sec_list.append(sec=sec)
            self.nsec += 1
            # Set up categories for different cell regions
            if sec.name().find('soma') >= 0:
                self.soma.append(sec=sec)
                if sec.name().find('0') >= 0:
                    self.root = sec
                    if self.verbose:
                        print(sec.name(), 'is root')
                elif Jonas_cell:
                    self.root = sec
            if sec.name().find('dend') >= 0:
                self.dendrites.append(sec=sec)
            if sec.name().find('axon') >= 0:
                self.dendrites.append(sec=sec)
Example #16
0
def create_model(morphology_file, model_obj_name, instance_name, create_type):
    '''Creates a full morphology cell instance from Neurolucida morphology model template filenames

    This function is called to create the original instance to be reduced and
    to create the control cell

    TODO: To support non-Neurolucida morphology files, this function should be CHANGED.
    '''
    assert instance_name in ('original_cell', 'control_cell'), \
        "name must be one of ('original_cell', 'control_cell')"

    h("{objref %s}" % instance_name)
    model = dict(instance_name=instance_name, model_obj_name=model_obj_name)
    if create_type in ('basic', 'human'):
        h("{instance_name} = new {model_obj_name}()".format(**model))

        # instantiates according to morphology using import3d
        nl = h.Import3d_Neurolucida3()
        nl.quiet = 1
        nl.input(morphology_file)
        import_3d = h.Import3d_GUI(nl, 0)

        instance_created = getattr(h, instance_name)
        # associates cell instance with the morphology file
        import_3d.instantiate(instance_created)
        # this function should be included in the model.hoc file given as a parameter
        instance_created.complete_full_model_creation()
    elif create_type in ('bbp', 'bbpactive'):
        h('{instance_name} = new {model_obj_name}(1, "{morphology_file}")'.format(
            morphology_file=morphology_file, **model))
        h('{instance_name} = {instance_name}.CellRef'.format(**model))

    elif create_type in ('bbpnew', ):
        with chdir(morphology_file[:morphology_file.rindex('/')]):
            h('{instance_name} = new {model_obj_name}(0)'.format(**model))
    elif create_type in ('hay', 'almog', 'allen'):
        h('{instance_name} = new {model_obj_name}("{morphology_file}")'.format(
            morphology_file=morphology_file, **model))

    return getattr(h, instance_name)
def create_model(model_file,
                 morph_file,
                 model_path="../PassiveModels/",
                 morph_path="../morphs/"):

    # creating the model
    h.load_file("import3d.hoc")
    h.load_file("nrngui.hoc")
    h("objref cell, tobj")
    h.load_file(model_path + model_file + ".hoc")
    h.execute("cell = new " + model_file + "()")
    nl = h.Import3d_Neurolucida3()
    nl.quiet = 1
    nl.input(morph_path + morph_file)
    imprt = h.Import3d_GUI(nl, 0)
    imprt.instantiate(h.cell)
    HCell = h.cell
    HCell.geom_nseg()
    HCell.create_model()
    HCell.biophys()

    return HCell
Example #18
0
def initialize_neuron(swc_path, file_paths):
    """ Initialize neuron with morphology and load hoc files

    Parameters
    ----------
    swc_path : str
        Path to SWC file
    file_paths : list
        List of str file paths of files for NEURON to load

    """
    h.load_file("stdgui.hoc")
    h.load_file("import3d.hoc")

    swc = h.Import3d_SWC_read()
    swc.input(swc_path)
    imprt = h.Import3d_GUI(swc, 0)
    h("objref this")
    imprt.instantiate(h.this)

    for sec in h.allsec():
        if sec.name().startswith("axon"):
            h.delete_section(sec=sec)

    axon = h.Section()
    axon.L = 60
    axon.diam = 1
    axon.connect(h.soma[0], 0.5, 0)

    h.define_shape()

    for sec in h.allsec():
        sec.insert('pas')
        for seg in sec:
            seg.pas.e = 0

    for file_path in file_paths:
        h.load_file(file_path.encode("ascii", "ignore"))
def instantiate_swc(filename):
    """load an swc file and instantiate it"""

    ### I have done this already: ###########################################
    ## load the NEURON library (just in case h is defined otherwise elsewhere)
    #from neuron import h, gui

    ## a helper library, included with NEURON
    #h.load_file('import3d.hoc')
    #########################################################################

    # load the data. Use Import3d_SWC_read for swc, Import3d_Neurolucida3 for
    # Neurolucida V3, Import3d_MorphML for MorphML (level 1 of NeuroML), or
    # Import3d_Eutectic_read for Eutectic. (There is also an
    # Import3d_Neurolucida_read for old Neurolucida files, but I've never seen one
    # in practice; try Import3d_Neurolucida3 first.)
    cell = h.Import3d_SWC_read()
    cell.input(filename)

    # easiest to instantiate by passing the loaded morphology to the Import3d_GUI
    # tool; with a second argument of 0, it won't display the GUI, but it will allow
    # use of the GUI's features
    i3d = h.Import3d_GUI(cell, 0)
    i3d.instantiate(None)
Example #20
0
    def createPops(self):

        #  Get info from nodes files
        for n in self.network_config['networks']['nodes']:
            nodes_file = self.subs(n['nodes_file'])
            node_types_file = self.subs(n['node_types_file'])

            print("\nLoading nodes from %s and %s" %
                  (nodes_file, node_types_file))

            h5file = tables.open_file(nodes_file, mode='r')

            self.parse_group(h5file.root.nodes)
            h5file.close()
            self.nodes_info[self.current_node] = load_csv_props(
                node_types_file)
            self.current_node = None

        pp.pprint(self.nodes_info)

        #  Use extracted node/cell info to create populations
        for sonata_pop in self.cell_info:
            # iterate over cell types -- will make one netpyne population per cell type
            for type in self.cell_info[sonata_pop]['type_numbers']:
                info = self.nodes_info[sonata_pop][type]
                pop_name = info['pop_name'] if 'pop_name' in info else None

                ref = info['model_name'] if 'model_name' in info else info[
                    'model_type']
                model_type = info['model_type']
                model_template = info[
                    'model_template'] if 'model_template' in info else '- None -'

                if pop_name:
                    pop_id = '%s_%s' % (sonata_pop, pop_name)
                else:
                    pop_id = '%s_%s_%s' % (sonata_pop, ref, type)

                self.pop_id_from_type[(sonata_pop, type)] = pop_id

                print(" - Adding population: %s which has model info: %s" %
                      (pop_id, info))

                size = self.cell_info[sonata_pop]['type_numbers'][type]

                # create netpyne pop
                # Note: alternatively could create sim.net.params.popParams and then call sim.createPops()
                popTags = {}
                popTags['cellModel'] = model_type
                popTags['cellType'] = info[
                    'model_name'] if 'model_name' in info else pop_id
                popTags['numCells'] = size
                popTags['pop'] = pop_id
                popTags['ei'] = info['ei'] if 'ei' in info else ''
                sim.net.pops[pop_id] = sim.Pop(pop_id, popTags)

                # create population cell template (sections) from morphology and dynamics params files
                if model_type == 'biophysical':
                    sim.net.pops[pop_id].cellModelClass = sim.CompartCell

                    # morphology
                    morphology_file = self.subs(
                        self.network_config['components']['morphologies_dir']
                    ) + '/' + info['morphology'] + '.swc'
                    cellMorph = EmptyCell()
                    swcData = h.Import3d_SWC_read()
                    swcData.input(morphology_file)
                    swcSecs = h.Import3d_GUI(swcData, 0)
                    swcSecs.instantiate(cellMorph)

                    # replace axon with AIS stub
                    if self.replaceAxon:
                        fix_axon_peri_v2(cellMorph)

                    # extract netpyne parameters
                    secs, secLists, synMechs, globs = neuronPyHoc.getCellParams(
                        cellMorph)

                    if self.setdLNseg:
                        fix_sec_nseg(secs, sim.cfg.dL)

                    # create mapping of sec ids
                    secLists['SONATA_sec_id'] = [
                        sim.conversion.getSecName(sec) for sec in cellMorph.all
                    ]

                    cellRule = {
                        'conds': {
                            'pop': pop_id
                        },
                        'secs': secs,
                        'secLists': secLists,
                        'globals': globs
                    }

                    # dynamics params
                    dynamics_params_file = self.subs(
                        self.network_config['components']
                        ['biophysical_neuron_models_dir'] + '/' +
                        info['model_template'])
                    if info['model_template'].startswith('nml'):
                        dynamics_params_file = dynamics_params_file.replace(
                            'nml:', '')
                        nml_doc = read_neuroml2_file(dynamics_params_file)
                        cell_dynamic_params = nml_doc.cells[0]
                        cellRule = self.setCellRuleDynamicParamsFromNeuroml(
                            cell_dynamic_params, cellRule)

                    elif info['dynamics_params'].startswith('json'):
                        dynamics_params = load_json(dynamics_params_file)
                        pass

                    # set extracted cell params in cellParams rule
                    sim.net.params.cellParams[pop_id] = cellRule

                    # clean up before next import
                    del swcSecs, cellMorph
                    h.initnrn()

                # create population of virtual cells (VecStims so can add spike times)
                elif model_type == 'virtual':
                    popTags['cellModel'] = 'VecStim'
                    sim.net.pops[pop_id].cellModelClass = sim.PointCell
Example #21
0
    def __init__(self, _id):
        self._id = _id

        h.load_file('stdlib.hoc')
        h.load_file('import3d.hoc')

        cell = h.Import3d_Neurolucida3()
        cell.input('morphology/GrC2020.asc')

        i3d = h.Import3d_GUI(cell, 0)
        i3d.instantiate(self)

        #Soma channels
        self.soma[0].nseg = 1 + (2 * int(self.soma[0].L / 40))
        self.soma[0].Ra = 100
        self.soma[0].cm = 2

        self.soma[0].insert('Leak')
        self.soma[0].gmax_Leak = 0.00020821612897999999
        self.soma[0].e_Leak = -60

        self.soma[0].insert('Kv3_4')
        self.soma[0].gkbar_Kv3_4 = 0.00053837153610999998

        self.soma[0].insert('Kv4_3')
        self.soma[0].gkbar_Kv4_3 = 0.0032501728450999999
        self.soma[0].ek = -88

        self.soma[0].insert('Kir2_3')
        self.soma[0].gkbar_Kir2_3 = 0.00080747403035999997

        self.soma[0].insert('GRC_CA')
        self.soma[0].gcabar_GRC_CA = 0.00066384354030999998

        self.soma[0].insert('Kv1_1')
        self.soma[0].gbar_Kv1_1 = 0.0046520692281700003

        self.soma[0].insert('Kv1_5')
        self.soma[0].gKur_Kv1_5 = 0.00106988075956

        self.soma[0].insert('Kv2_2_0010')
        self.soma[0].gKv2_2bar_Kv2_2_0010 = 2.5949576899999998e-05

        self.soma[0].insert('cdp5_CR')

        self.soma[0].push()
        self.soma[0].eca = 137.5
        h.pop_section()

        self.whatami = "GrC_2020_mild"

        #DEND
        for i in self.dend:
            i.nseg = 1 + (2 * int(i.L / 40))
            i.Ra = 100
            i.cm = 2.5

            i.insert('Leak')
            i.gmax_Leak = 0.00020424219215
            i.e_Leak = -60

            i.insert('GRC_CA')
            i.gcabar_GRC_CA = 0.01841833779253

            i.insert('Kca1_1')
            i.gbar_Kca1_1 = 0.02998872868395
            i.ek = -88

            i.insert('Kv1_1')
            i.gbar_Kv1_1 = 0.00010675447184

            i.insert('cdp5_CR')

            i.push()
            i.eca = 137.5
            h.pop_section()

#Hilock
        self.axon = h.Section(name='hilock', cell=self)
        self.axon.L = 1
        self.axon.nseg = 1
        self.axon.diam = 1.5
        self.axon.Ra = 100
        self.axon.cm = 2

        self.axon.insert('Leak')
        self.axon.gmax_Leak = 0.00025295417368000002
        self.axon.e_Leak = -60

        self.axon.insert('GRC_NA_FHF')
        self.axon.gnabar_GRC_NA_FHF = 0.011082499796400001
        self.axon.ena = 87.39

        self.axon.insert('Kv3_4')
        self.axon.gkbar_Kv3_4 = 0.050732563882920002
        self.axon.ek = -88

        self.axon.insert('GRC_CA')
        self.axon.gcabar_GRC_CA = 0.00028797253573000002

        self.axon.insert('cdp5_CR')

        self.axon.push()
        self.axon.eca = 137.5
        h.pt3dadd(0.0, 5.62232, 0.0, self.axon.diam)
        h.pt3dadd(0.0, 6.62232, 0.0, self.axon.diam)
        h.pop_section()

        self.axon.connect(self.soma[0], 0, 0)

        #AIS
        self.ais = h.Section(name='ais', cell=self)
        self.ais.L = 10
        self.ais.nseg = 1
        self.ais.diam = 0.7
        self.ais.Ra = 100
        self.ais.cm = 1

        self.ais.insert('GRC_NA_FHF')
        self.ais.gnabar_GRC_NA_FHF = 1.06883116205825
        self.ais.ena = 87.39

        self.ais.insert('Kv3_4')
        self.ais.gkbar_Kv3_4 = 0.034592458064240002
        self.ais.ek = -88

        self.ais.insert('Leak')
        self.ais.gmax_Leak = 0.00025011065810000001
        self.ais.e_Leak = -60

        self.ais.insert('GRC_CA')
        self.ais.gcabar_GRC_CA = 0.00011630629281

        self.ais.insert('GRC_KM')
        self.ais.gkbar_GRC_KM = 0.00044764153078999998

        self.ais.insert('cdp5_CR')

        self.ais.push()
        self.ais.eca = 137.5

        h.pt3dadd(0.0, 6.62232, 0.0, self.ais.diam)
        h.pt3dadd(0.0, 16.62232, 0.0, self.ais.diam)
        h.pop_section()

        lensec = 7
        secnumber_aa = int(126 / lensec)
        secnumber_pf = int(1000 / lensec)

        self.ais.connect(self.axon, 1, 0)

        self.HD_aa = [
            h.Section(cell=self, name='aa_' + str(x))
            for x in range(secnumber_aa)
        ]
        for b in self.HD_aa:
            b.L = lensec
            b.nseg = 1
            b.diam = 0.3
            b.Ra = 100
            b.cm = 1

            b.insert('GRC_NA')
            b.gnabar_GRC_NA = 0.029973709719629999
            b.ena = 87.39

            b.insert('Kv3_4')
            b.gkbar_Kv3_4 = 0.0046029972380800003
            b.ek = -88

            b.insert('Leak')
            b.gmax_Leak = 7.8963697590000003e-05
            b.e_Leak = -60

            b.insert('GRC_CA')
            b.gcabar_GRC_CA = 0.00059214434259999998

            b.insert('cdp5_CR')

            b.push()
            b.eca = 137.5

            len_initial = 16.62232
            len_ending = 7

            h.pt3dadd(0.0, len_initial, 0.0, b.diam)
            h.pt3dadd(0.0, len_initial + len_ending, 0.0, b.diam)
            h.pop_section()

            len_initial = len_initial + len_ending

        self.HD_pf1 = [
            h.Section(cell=self, name='pf_' + str(x))
            for x in range(secnumber_pf)
        ]

        for i in self.HD_pf1:
            i.L = lensec
            i.nseg = 1
            i.diam = 0.15
            i.Ra = 100
            i.cm = 1

            i.insert('GRC_NA')
            i.gnabar_GRC_NA = 0.01896618618573
            i.ena = 87.39

            i.insert('Kv3_4')
            i.gkbar_Kv3_4 = 0.0094015060525799998
            i.ek = -88

            i.insert('Leak')
            i.gmax_Leak = 4.1272473000000001e-07
            i.e_Leak = -60

            i.insert('GRC_CA')
            i.gcabar_GRC_CA = 0.00064742320254000001

            i.insert('cdp5_CR')

            i.push()
            i.eca = 137.5

            len_initial = 142.62232
            len_ending = 7

            h.pt3dadd(len_initial, len_initial, 0.0, i.diam)
            h.pt3dadd(len_initial + len_ending, len_initial, 0.0, i.diam)
            h.pop_section()

            len_initial = len_initial + len_ending

        self.HD_pf2 = [
            h.Section(cell=self, name='pf_' + str(x))
            for x in range(secnumber_pf)
        ]
        for z in self.HD_pf2:
            z.L = lensec
            z.nseg = 1
            z.diam = 0.15
            z.Ra = 100
            z.cm = 1

            z.insert('GRC_NA')
            z.gnabar_GRC_NA = 0.01896618618573
            z.ena = 87.39

            z.insert('Kv3_4')
            z.gkbar_Kv3_4 = 0.0094015060525799998
            z.ek = -88

            z.insert('Leak')
            z.gmax_Leak = 4.1272473000000001e-07
            z.e_Leak = -60

            z.insert('GRC_CA')
            z.gcabar_GRC_CA = 0.00064742320254000001

            z.insert('cdp5_CR')

            z.push()
            z.eca = 137.5

            len_initial = 142.62232
            len_ending = 7

            h.pt3dadd(len_initial, len_initial, 0.0, i.diam)
            h.pt3dadd(len_initial - len_ending, len_initial, 0.0, i.diam)
            h.pop_section()

            len_initial = len_initial - len_ending

#Connections

#AA
        for j in range(secnumber_aa - 1):
            l = j + 1
            self.HD_aa[l].connect(self.HD_aa[j], 1, 0)
#PF
        for i in range(secnumber_pf - 1):
            l = i + 1
            self.HD_pf1[l].connect(self.HD_pf1[i], 1, 0)
            self.HD_pf2[l].connect(self.HD_pf2[i], 1, 0)

        self.HD_pf1[0].connect(self.HD_aa[secnumber_aa - 1], 1, 0)
        self.HD_pf2[0].connect(self.HD_aa[secnumber_aa - 1], 1, 0)

        #Axon connection to the AIS
        self.HD_aa[0].connect(self.ais, 1, 0)

        #Time and Voltage vectors
        self.time_vector = h.Vector()
        self.time_vector.record(h._ref_t)

        self.vm_soma = h.Vector()
        self.vm_soma.record(self.soma[0](0.5)._ref_v)
Example #22
0
# sodium inactivation 'h'
alpha = 0.07 * exp(-(v + 65.0) / 20.0)
beta = 1.0 / (exp(-(v + 35.0) / 10.0) + 1.0)
htau = 1.0 / (q10 * (alpha + beta))
hinf = alpha / (alpha + beta)

# potassium activation 'n'
alpha = 0.01 * vtrap(-(v + 55.0), 10.0)
beta = 0.125 * exp(-(v + 65.0) / 80.0)
ntau = 1.0 / (q10 * (alpha + beta))
ninf = alpha / (alpha + beta)

h.load_file("import3d.hoc")
cell = h.Import3d_SWC_read()
cell.input("c91662.swc")
i3d = h.Import3d_GUI(cell, 0)


class Cell:
    def move(self, offset=(0, 0, 0)):
        ox, oy, oz = offset[0], offset[1], offset[2]
        h.define_shape()
        xlo = ylo = zlo = xhi = yhi = zhi = None
        for sec in self.all:
            sec.nseg = 1
            n3d = sec.n3d()
            xs = [sec.x3d(i) + ox for i in range(n3d)]
            ys = [sec.y3d(i) + oy for i in range(n3d)]
            zs = [sec.z3d(i) + oz for i in range(n3d)]
            ds = [sec.diam3d(i) for i in range(n3d)]
            sec.pt3dclear()
Example #23
0
    def createPops(self):

        #  Get info from nodes files
        for n in self.network_config['networks']['nodes']:
            nodes_file = self.subs(n['nodes_file'])
            node_types_file = self.subs(n['node_types_file'])

            print("\nLoading nodes from %s and %s"%(nodes_file, node_types_file))

            h5file = tables.open_file(nodes_file,mode='r')

            self.parse_group(h5file.root.nodes)
            h5file.close()
            self.nodes_info[self.current_node] = load_csv_props(node_types_file)
            self.current_node = None

        pp.pprint(self.nodes_info)


        #  Use extracted node/cell info to create populations
        for sonata_pop in self.cell_info:
            # iterate over cell types -- will make one netpyne population per cell type
            for type in self.cell_info[sonata_pop]['type_numbers']:
                info = self.nodes_info[sonata_pop][type]
                pop_name = info['pop_name'] if 'pop_name' in info else None

                ref = info['model_name'] if 'model_name' in info else info['model_type']
                model_type = info['model_type']
                model_template = info['model_template'] if 'model_template' in info else '- None -'

                if pop_name:
                    pop_id = '%s_%s'%(sonata_pop, pop_name)
                else:
                    pop_id = '%s_%s_%s'%(sonata_pop,ref,type)

                self.pop_id_from_type[(sonata_pop, type)] = pop_id

                print(" - Adding population: %s which has model info: %s"%(pop_id, info))

                size = self.cell_info[sonata_pop]['type_numbers'][type]

                # create netpyne pop
                # Note: alternatively could create sim.net.params.popParams and then call sim.createPops()
                popTags = {}
                popTags['cellModel'] = model_type
                popTags['cellType'] = info['model_name'] if 'model_name' in info else pop_id
                popTags['numCells'] = size
                popTags['pop'] = pop_id
                popTags['ei'] = info['ei'] if 'ei' in info else ''
                sim.net.pops[pop_id] = sim.Pop(pop_id, popTags)
                sim.net.params.popParams[pop_id] = popTags

                # create population cell template (sections) from morphology and dynamics params files
                if model_type == 'biophysical':
                    sim.net.pops[pop_id].cellModelClass = sim.CompartCell

                    # morphology
                    morphology_file = self.subs(self.network_config['components']['morphologies_dir']) +'/'+info['morphology'] + '.swc'
                    cellMorph = EmptyCell()
                    swcData = h.Import3d_SWC_read()
                    swcData.input(morphology_file)
                    swcSecs = h.Import3d_GUI(swcData, 0)
                    swcSecs.instantiate(cellMorph)

                    # replace axon with AIS stub
                    if self.replaceAxon:
                        fix_axon_peri(cellMorph)

                    # extract netpyne parameters
                    secs, secLists, synMechs, globs = neuronPyHoc.getCellParams(cellMorph)

                    # remove sec vinits since imported temporary cell with morph
                    for secName in secs:
                        del secs[secName]['vinit']

                    # fix nseg based on dL
                    if self.setdLNseg:
                        fix_sec_nseg(secs, sim.cfg.dL)

                    # invert y coordinates
                    # if self.swapSomaXY:
                    #    swap_soma_xy(secs)

                    # make soma mid segment (x,y,z) = (0,0,0)
                    # somaLabel = next((s for s in secs.keys() if 'soma' in s), None)
                    # somaPtFirst = secs[somaLabel]['geom']['pt3d'][0]
                    # somaPtLast = secs[somaLabel]['geom']['pt3d'][-1]
                    # somaPt = [(p1+p2)/2.0 for p1,p2 in zip(somaPtFirst, somaPtLast)]
                    # for secLabel in secs:
                    #     for ipt3d in range(len(secs[secLabel]['geom']['pt3d'])):
                    #         origPt = secs[secLabel]['geom']['pt3d'][ipt3d]
                    #         offsetX = 0.0
                    #         if 'apic' in secLabel:
                    #             offsetX = 0.0
                    #         newpt = (origPt[0] - somaPt[0] + offsetX, origPt[1] - somaPt[1], origPt[2] - somaPt[2], origPt[3])
                    #         secs[secLabel]['geom']['pt3d'][ipt3d] = newpt

                    # create mapping of sec ids
                    secLists['SONATA_sec_id'] = [sim.conversion.getSecName(sec) for sec in cellMorph.all]

                    cellRule = {'conds': {'pop': pop_id}, 'secs': secs, 'secLists': secLists, 'globals': globs}

                    # dynamics params
                    if info['model_template'].startswith('nml'):
                        dynamics_params_file = self.subs(self.network_config['components']['biophysical_neuron_models_dir']+'/'+info['model_template'])
                        dynamics_params_file = dynamics_params_file.replace('nml:', '')

                        #nml_doc = read_neuroml2_file(dynamics_params_file)
                        #cell_dynamic_params = nml_doc.cells[0]
                        cell_dynamic_params = NMLTree(dynamics_params_file)

                        cellRule = self.setCellRuleDynamicParamsFromNeuroml(cell_dynamic_params, cellRule)

                    elif info['dynamics_params'].endswith('json'):
                        dynamics_params_file = self.subs(self.network_config['components']['biophysical_neuron_models_dir']+'/'+info['dynamics_params'])
                        cell_dynamic_params = load_json(dynamics_params_file)
                        cellRule = self.setCellRuleDynamicParamsFromJson(cell_dynamic_params, cellRule)


                    # set extracted cell params in cellParams rule
                    sim.net.params.cellParams[pop_id] = cellRule

                    # clean up before next import
                    del swcSecs, cellMorph
                    h.initnrn()

                # create population of virtual cells (VecStims so can add spike times)
                elif model_type == 'virtual':
                    popTags['cellModel'] = 'VecStim'
                    sim.net.pops[pop_id].cellModelClass = sim.PointCell
    def __init__(self, params=defparams, factors=None):
        Import = h.Import3d_SWC_read()
        Import.input(morphology + 'latest_WT-P270-20-14ak.swc')
        imprt = h.Import3d_GUI(Import, 0)
        imprt.instantiate(None)
        h.define_shape()
        # h.cao0_ca_ion = 2  # default in nrn
        h.celsius = 35
        self._create_sectionlists()
        self._set_nsegs()
        self.v_init = -80
        for sec in self.allseclist:
            sec.Ra = 150
            sec.cm = 1.0
            sec.insert('pas')
            #sec.g_pas = 1e-5 # set using json file
            sec.e_pas = -70 # -73
        for sec in self.somalist:
            sec.insert('naf')
            sec.insert('kaf')
            sec.insert('kas')
            sec.insert('kdr')
            sec.insert('kir')
            sec.ena = 50
            sec.ek = -85 # -90
            sec.insert('cal12')
            sec.insert('cal13')
            sec.insert('car')
            sec.insert('cadyn')
            sec.insert('caldyn')
            sec.insert('sk')
            sec.insert('bk')
            sec.insert('can')
	    #sec.kb_cadyn = 200.
        for sec in self.axonlist:
            sec.insert('naf')
            #sec.insert('kaf')
            sec.insert('kas')
            #sec.insert('kdr')
            #sec.insert('kir')
            sec.ena = 50
            sec.ek = -85 # -90
        for sec in self.dendlist:
            sec.insert('naf')
            sec.insert('kaf')
            sec.insert('kas')
            sec.insert('kdr')
            sec.insert('kir')
            sec.ena = 50
            sec.ek = -85 # -90
            sec.insert('cal12')
            sec.insert('cal13')
            sec.insert('car')
            sec.insert('cadyn')
            sec.insert('caldyn')
            sec.insert('sk')
            sec.insert('bk')
            sec.insert('cat32')
            sec.insert('cat33')

        with open(params) as file:
            par = json.load(file)

        self.distribute_channels("soma", "g_pas", 0, 1, 0, 0, 0, float(par['g_pas_all']['Value']))
        self.distribute_channels("axon", "g_pas", 0, 1, 0, 0, 0, float(par['g_pas_all']['Value']))
        self.distribute_channels("dend", "g_pas", 0, 1, 0, 0, 0, float(par['g_pas_all']['Value']))

        self.distribute_channels("soma", "gbar_naf", 0, 1, 0, 0, 0, float(par['gbar_naf_somatic']['Value']),factors=factors)
        self.distribute_channels("soma", "gbar_kaf", 0, 1, 0, 0, 0, float(par['gbar_kaf_somatic']['Value']))
        self.distribute_channels("soma", "gbar_kas", 0, 1, 0, 0, 0, float(par['gbar_kas_somatic']['Value']))
        self.distribute_channels("soma", "gbar_kdr", 0, 1, 0, 0, 0, float(par['gbar_kdr_somatic']['Value']))
        self.distribute_channels("soma", "gbar_kir", 0, 1, 0, 0, 0, float(par['gbar_kir_somatic']['Value']))
        self.distribute_channels("soma", "gbar_sk", 0, 1, 0, 0, 0, float(par['gbar_sk_somatic']['Value']))
        self.distribute_channels("soma", "gbar_bk", 0, 1, 0, 0, 0, float(par['gbar_bk_somatic']['Value']))
        
        #self.distribute_channels("axon", "gbar_naf", 0, 1, 0, 0, 0, float(par['gbar_naf_somatic']['Value']),factors=factors)
        self.distribute_channels("axon", "gbar_naf", 3, 1, 1.1, 30, 500, float(par['gbar_naf_axonal']['Value']),factors=factors)
        #self.distribute_channels("axon", "gbar_naf", 3, 1, 1.1, 20, 500, float(par['gbar_naf_axonal']['Value']))
        #self.distribute_channels("dend", "gbar_naf", 1, 1,  1.2, 30, -5, float(par['gbar_naf_axonal']['Value']))
        self.distribute_channels("axon", "gbar_kas", 0, 1, 0, 0, 0, float(par['gbar_kas_axonal']['Value']))
        
        self.distribute_channels("dend", "gbar_naf", 1, 0.1, 0.9, 60.0, 10.0, float(par['gbar_naf_basal']['Value']),factors=factors)
        self.distribute_channels("dend", "gbar_kaf", 1, 1,  0.5, 120, -30, float(par['gbar_kaf_basal']['Value']))
        #self.distribute_channels("dend", "gbar_naf", 0, 1, -0.0072, 0, 0, float(par['gbar_naf_basal']['Value']))
        #self.distribute_channels("dend", "gbar_kaf", 0, 1,  0.0167, 0, 0, float(par['gbar_kaf_basal']['Value']))
        self.distribute_channels("dend", "gbar_kas", 2, 1, 9.0, 0.0, -5.0, float(par['gbar_kas_basal']['Value']))
        self.distribute_channels("dend", "gbar_kdr", 0, 1, 0, 0, 0, float(par['gbar_kdr_basal']['Value']))
        self.distribute_channels("dend", "gbar_kir", 0, 1, 0, 0, 0, float(par['gbar_kir_basal']['Value']))
        self.distribute_channels("dend", "gbar_sk", 0, 1, 0, 0, 0, float(par['gbar_sk_basal']['Value']))
        self.distribute_channels("dend", "gbar_bk", 0, 1, 0, 0, 0, float(par['gbar_bk_basal']['Value']))

        self.distribute_channels("soma", "pbar_cal12", 0, 1, 0, 0, 0, 1e-5)
        self.distribute_channels("soma", "pbar_cal13", 0, 1, 0, 0, 0, 1e-6)
        self.distribute_channels("soma", "pbar_car", 0, 1, 0, 0, 0, 1e-4)
        self.distribute_channels("soma", "pbar_can", 0, 1, 0, 0, 0, 3e-5)
        #self.distribute_channels("soma", "kb_cadyn", 0, 1, 0, 0, 0, 200.0)
        self.distribute_channels("dend", "pbar_cal12", 0, 1, 0, 0, 0, 1e-5)
        self.distribute_channels("dend", "pbar_cal13", 0, 1, 0, 0, 0, 1e-6)
        self.distribute_channels("dend", "pbar_car", 0, 1, 0, 0, 0, 1e-4)
        self.distribute_channels("dend", "pbar_cat32", 1, 0, 1.0, 70.0, -4.5, 1e-7)
        self.distribute_channels("dend", "pbar_cat33", 1, 0, 1.0, 70.0, -4.5, 1e-8)
    def __init__(self,  params=None,                                        \
                        morphology=None,     \
                        variables=None,                                     \
                        section=None                                        ):
        Import = h.Import3d_SWC_read()
        Import.input(morphology)
        imprt = h.Import3d_GUI(Import, 0)
        imprt.instantiate(None)
        h.define_shape()
        # h.cao0_ca_ion = 2  # default in nrn
        h.celsius = 35
        self._create_sectionlists()
        self._set_nsegs(section=section)
        self.v_init = -85

        self.dendritic_channels =   [
                    "naf",
                    "kaf",
                    "kas",
                    "kdr",
                    "kir",
                    "cal12",
                    "cal13",
                    "can",
                    "car",
                    "cav32",
                    "cav33",
                    "sk",
                    "bk"            ]

        self.somatic_channels = [
                    "naf",
                    "kaf",
                    "kas",
                    "kdr",
                    "kir",
                    "cal12",
                    "cal13",
                    "can",
                    "car",
                    "sk",
                    "bk"        ]

        self.axonal_channels = [
                    "naf",
                    "kas" ,
                    "Im"       ]

        # insert active mechanisms (related to channels) -------------
        for sec in self.somalist:
            for mech in self.somatic_channels+["cadyn", "caldyn"]:
                sec.insert(mech)

        for sec in self.axonlist:
            for mech in self.axonal_channels:
                sec.insert(mech)

        for sec in self.dendlist:
            for mech in self.dendritic_channels+["cadyn", "caldyn"]:
                sec.insert(mech)

        with open(params) as file:
            par = json.load(file)

        # set passive parameters --------------------------------------------
        for sec in self.allseclist:
            sec.Ra = 150
            sec.cm = 1.0
            sec.insert('pas')
            #sec.g_pas = 1e-5 # set using json file
            sec.e_pas = -70 # -73
            sec.g_pas = float(par['g_pas_all']['Value'])
            sec.ena = 50
            sec.ek = -85 # -90

        self.distribute_channels("soma", "gbar_naf",   0, 1, 0, 0, 0, float(par['gbar_naf_somatic']['Value']))
        self.distribute_channels("soma", "gbar_kaf",   0, 1, 0, 0, 0, float(par['gbar_kaf_somatic']['Value']))
        self.distribute_channels("soma", "gbar_kas",   0, 1, 0, 0, 0, float(par['gbar_kas_somatic']['Value']))
        self.distribute_channels("soma", "gbar_kdr",   0, 1, 0, 0, 0, float(par['gbar_kdr_somatic']['Value']))
        self.distribute_channels("soma", "gbar_bk",    0, 1, 0, 0, 0, float(par['gbar_bk_somatic' ]['Value']))
        self.distribute_channels("soma", "pbar_cal12", 0, 1, 0, 0, 0, 1.34e-5)
        self.distribute_channels("soma", "pbar_cal13", 0, 1, 0, 0, 0, 1.34e-6)
        self.distribute_channels("soma", "pbar_car",   0, 1, 0, 0, 0, 1.34e-4)
        self.distribute_channels("soma", "pbar_can",   0, 1, 0, 0, 0,    4e-5)

        self.distribute_channels("dend", "gbar_kdr",   0, 1, 0, 0, 0, float(par['gbar_kdr_basal']['Value']))
        self.distribute_channels("dend", "gbar_bk",    0, 1, 0, 0, 0, float(par['gbar_bk_basal' ]['Value']))
        self.distribute_channels("dend", "pbar_cal12", 0, 1, 0, 0, 0, 1e-5)
        self.distribute_channels("dend", "pbar_cal13", 0, 1, 0, 0, 0, 1e-6)
        self.distribute_channels("dend", "pbar_car",   0, 1, 0, 0, 0, 1e-4)

        self.distribute_channels("axon", "gbar_kas",   0, 1, 0, 0, 0,      float(par['gbar_kas_axonal']['Value']))
        self.distribute_channels("axon", "gbar_naf",   3, 1, 1.1, 30, 500, float(par['gbar_naf_axonal']['Value']))
        self.distribute_channels("axon", "gbar_Im",   0, 1, 0, 0, 0, 1.0e-3)
        # in ephys step functions are not supported so something like below formula will be used instead.
        #self.distribute_channels("axon", "gbar_naf",   1, 1, 0.1, 30, -1, float(par['gbar_naf_axonal']['Value']))
        #(1 + 0.9/(1 + math.exp(({distance}-30.0)/-1.0) ))

        if variables:
            self.distribute_channels("dend", "gbar_naf", 1,   1.0-variables['naf'][1],  \
                                                              variables['naf'][1],      \
                                                              variables['naf'][2],      \
                                                              variables['naf'][3],      \
                                                              np.power(10,variables['naf'][0])*float(par['gbar_naf_basal']['Value']))
            self.distribute_channels("dend", "gbar_kaf", 1,   1.0,                      \
                                                              variables['kaf'][1],      \
                                                              variables['kaf'][2],      \
                                                              variables['kaf'][3],      \
                                                              np.power(10,variables['kaf'][0])*float(par['gbar_kaf_basal']['Value']))
            self.distribute_channels("dend", "gbar_kas", 1,   0.1,                      \
                                                              0.9,                      \
                                                              variables['kas'][1],      \
                                                              variables['kas'][2],      \
                                                              np.power(10,variables['kas'][0])*float(par['gbar_kas_basal']['Value']))

            self.distribute_channels("dend", "gbar_kir", 0,   np.power(10,variables['kir'][0]), 0, 0, 0,    float(par['gbar_kir_basal'  ]['Value']))
            self.distribute_channels("soma", "gbar_kir", 0,   np.power(10,variables['kir'][0]), 0, 0, 0,    float(par['gbar_kir_somatic']['Value']))
            self.distribute_channels("dend", "gbar_sk",  0,   np.power(10,variables['sk' ][0]), 0, 0, 0,    float(par['gbar_sk_basal'   ]['Value']))
            self.distribute_channels("soma", "gbar_sk",  0,   np.power(10,variables['sk' ][0]), 0, 0, 0,    float(par['gbar_sk_somatic' ]['Value']))

            self.distribute_channels("dend", "pbar_can",   1, 1.0-variables['can'][1],  \
                                                              variables['can'][1],      \
                                                              variables['can'][2],      \
                                                              variables['can'][3],      \
                                                              np.power(10,variables['can'][0]))
            self.distribute_channels("dend", "pbar_cav32", 1, 0,                        \
                                                              1,                        \
                                                              variables['c32'][1],      \
                                                              variables['c32'][2],      \
                                                              np.power(10,variables['c32'][0]))
            self.distribute_channels("dend", "pbar_cav33", 1, 0,                        \
                                                              1,                        \
                                                              variables['c33'][1],      \
                                                              variables['c33'][2],      \
                                                              np.power(10,variables['c33'][0]))
        else:
            self.distribute_channels("dend", "gbar_naf", 1, 0.1, 0.9,   60.0,   10.0, float(par['gbar_naf_basal']['Value']))
            self.distribute_channels("dend", "gbar_kaf", 1,   1, 0.5,  120.0,  -30.0, float(par['gbar_kaf_basal']['Value']))
            self.distribute_channels("dend", "gbar_kas", 2,   1, 9.0,  0.0, -5.0, float(par['gbar_kas_basal']['Value']))
            self.distribute_channels("dend", "gbar_kir", 0, 1, 0, 0, 0, float(par['gbar_kir_basal']['Value']))
            self.distribute_channels("soma", "gbar_kir", 0, 1, 0, 0, 0, float(par['gbar_kir_somatic']['Value']))
            self.distribute_channels("dend", "gbar_sk",  0, 1, 0, 0, 0, float(par['gbar_sk_basal']['Value']))
            self.distribute_channels("soma", "gbar_sk",  0, 1, 0, 0, 0, float(par['gbar_sk_basal']['Value']))
            self.distribute_channels("dend", "pbar_can", 0, 1, 0, 0, 0, 1e-7)
            self.distribute_channels("dend", "pbar_cav32", 1, 0, 1.0, 120.0, -30.0, 1e-7)
            self.distribute_channels("dend", "pbar_cav33", 1, 0, 1.0, 120.0, -30.0, 1e-8)
Example #26
0
def simulate_models_IF(cells_list,
                       models_dirs,
                       models_path="../ActiveModels/",
                       morphs_path="../Morphs/",
                       save_traces=False,
                       save_path='simulated_models_IF_Curve/',
                       thresh=0):
    h.load_file("import3d.hoc")
    h.steps_per_ms = 25
    h.dt = 1.0 / h.steps_per_ms
    h.tstop = 1500
    h.celsius = 37
    h.v_init = -86

    for ix, cell in enumerate(cells_list):
        model = models_dirs[cell]['model']
        print "simulates model", model
        h.load_file(models_path + model + ".hoc")
        h("objref HCell")
        h("HCell = new " + model + "()")
        HCell = h.HCell
        nl = h.Import3d_Neurolucida3()

        # Creating the model
        nl.quiet = 1
        nl.input(morphs_path + models_dirs[cell]['morph'])
        imprt = h.Import3d_GUI(nl, 0)
        imprt.instantiate(HCell)
        HCell.indexSections(imprt)
        HCell.geom_nsec()
        HCell.geom_nseg()
        HCell.delete_axon()
        HCell.insertChannel()
        HCell.init_biophys()
        HCell.biophys()

        # The stimulus
        icl = h.IClamp(0.5, sec=HCell.soma[0])
        icl.dur = 1000
        icl.delay = 120.33
        icl.amp = 0

        # Record the voltage at the soma
        Vsoma = h.Vector()
        Vsoma.record(HCell.soma[0](.5)._ref_v)
        tvec = h.Vector()
        tvec.record(h._ref_t)

        HCell.soma[0].push()
        MODEL_IF = []
        range_amps = range(0, 3000, 100)
        bar = progressbar.ProgressBar(max_value=len(range_amps),
                                      widgets=[
                                          ' [',
                                          progressbar.Timer(),
                                          '] ',
                                          progressbar.Bar(),
                                          ' (',
                                          progressbar.ETA(),
                                          ') ',
                                      ])

        for jx, amp1000 in enumerate(range_amps):
            amp = amp1000 / 1000.0
            icl.amp = amp
            h.init(h.v_init)
            h.run()
            n = count_spikes(np.array(Vsoma), thresh)
            MODEL_IF.append((amp, n))

            bar.update(jx)

        MODEL_IF = np.array(MODEL_IF)

        models_dirs[cell]['I'] = MODEL_IF[:, 0]
        models_dirs[cell]['F'] = MODEL_IF[:, 1]

        if save_traces:
            if not os.path.exists(save_path):
                os.mkdir(save_path)
            np.savetxt(save_path + model + "IF.txt", np.array(MODEL_IF))
Example #27
0
def load(filename,
         fileformat=None,
         cell=None,
         use_axon=True,
         xshift=0,
         yshift=0,
         zshift=0):
    """
    Load an SWC from filename and instantiate inside cell. Code kindly provided
    by @ramcdougal.

    Args:
        filename = .swc file containing morphology
        cell = Cell() object. (Default: None, creates new object)
        filename = the filename of the SWC file
        use_axon = include the axon? Default: True (yes)
        xshift, yshift, zshift = use to position the cell

    Returns:
        Cell() object with populated soma, axon, dend, & apic fields

    Minimal example:
        # pull the morphology for the demo from NeuroMorpho.Org
        from PyNeuronToolbox import neuromorphoorg
        with open('c91662.swc', 'w') as f:
            f.write(neuromorphoorg.morphology('c91662'))
        cell = load_swc(filename)

    """

    if cell is None:
        cell = Cell(name=string.join(filename.split('.')[:-1]))

    if fileformat is None:
        fileformat = filename.split('.')[-1]

    name_form = {1: 'soma[%d]', 2: 'axon[%d]', 3: 'dend[%d]', 4: 'apic[%d]'}

    # load the data. Use Import3d_SWC_read for swc, Import3d_Neurolucida3 for
    # Neurolucida V3, Import3d_MorphML for MorphML (level 1 of NeuroML), or
    # Import3d_Eutectic_read for Eutectic.
    if fileformat == 'swc':
        morph = h.Import3d_SWC_read()
    elif fileformat == 'asc':
        morph = h.Import3d_Neurolucida3()
    else:
        raise Exception('file format `%s` not recognized' % (fileformat))
    morph.input(filename)

    # easiest to instantiate by passing the loaded morphology to the Import3d_GUI
    # tool; with a second argument of 0, it won't display the GUI, but it will allow
    # use of the GUI's features
    i3d = h.Import3d_GUI(morph, 0)

    # get a list of the swc section objects
    swc_secs = i3d.swc.sections
    swc_secs = [swc_secs.object(i) for i in xrange(int(swc_secs.count()))]

    # initialize the lists of sections
    sec_list = {1: cell.soma, 2: cell.axon, 3: cell.dend, 4: cell.apic}

    # name and create the sections
    real_secs = {}
    for swc_sec in swc_secs:
        cell_part = int(swc_sec.type)

        # skip everything else if it's an axon and we're not supposed to
        # use it... or if is_subsidiary
        if (not (use_axon) and cell_part == 2) or swc_sec.is_subsidiary:
            continue

        # figure out the name of the new section
        if cell_part not in name_form:
            raise Exception('unsupported point type')
        name = name_form[cell_part] % len(sec_list[cell_part])

        # create the section
        sec = h.Section(name=name)

        # connect to parent, if any
        if swc_sec.parentsec is not None:
            sec.connect(real_secs[swc_sec.parentsec.hname()](swc_sec.parentx))

        # define shape
        if swc_sec.first == 1:
            h.pt3dstyle(1,
                        swc_sec.raw.getval(0, 0),
                        swc_sec.raw.getval(1, 0),
                        swc_sec.raw.getval(2, 0),
                        sec=sec)

        j = swc_sec.first
        xx, yy, zz = [swc_sec.raw.getrow(i).c(j) for i in xrange(3)]
        dd = swc_sec.d.c(j)
        if swc_sec.iscontour_:
            # never happens in SWC files, but can happen in other formats supported
            # by NEURON's Import3D GUI
            raise Exception('Unsupported section style: contour')

        if dd.size() == 1:
            # single point soma; treat as sphere
            x, y, z, d = [dim.x[0] for dim in [xx, yy, zz, dd]]
            for xprime in [x - d / 2., x, x + d / 2.]:
                h.pt3dadd(xprime + xshift, y + yshift, z + zshift, d, sec=sec)
        else:
            for x, y, z, d in zip(xx, yy, zz, dd):
                h.pt3dadd(x + xshift, y + yshift, z + zshift, d, sec=sec)

        # store the section in the appropriate list in the cell and lookup table
        sec_list[cell_part].append(sec)
        real_secs[swc_sec.hname()] = sec

    cell.all = cell.soma + cell.apic + cell.dend + cell.axon
    return cell
Example #28
0
    def __init__(self,  params=None,                                \
                        morphology='latest_WT-P270-20-14ak.swc'     ):
        Import = h.Import3d_SWC_read()
        Import.input(morphology)
        imprt = h.Import3d_GUI(Import, 0)
        imprt.instantiate(None)
        h.define_shape()
        # h.cao0_ca_ion = 2  # default in nrn
        h.celsius = 35
        self._create_sectionlists()
        self._set_nsegs()
        self.v_init = -80

        for sec in self.somalist:
            for mech in [
                    "naf", "kaf", "kas", "kdr", "kir", "cal12", "cal13", "can",
                    "car", "cadyn", "caldyn", "sk", "bk"
            ]:
                sec.insert(mech)

        for sec in self.axonlist:
            for mech in ["naf", "kas"]:
                sec.insert(mech)

        for sec in self.dendlist:
            for mech in [
                    "naf", "kaf", "kas", "kdr", "kir", "cal12", "cal13", "car",
                    "cat32", "cat33", "cadyn", "caldyn", "sk", "bk"
            ]:
                sec.insert(mech)

        for sec in self.allseclist:
            sec.Ra = 150
            sec.cm = 1.0
            sec.insert('pas')
            #sec.g_pas = 1e-5 # set using json file
            sec.e_pas = -70  # -73
            sec.ena = 50
            sec.ek = -85  # -90

        with open(params) as file:
            par = json.load(file)

        self.distribute_channels("soma", "g_pas", 0, 1, 0, 0, 0,
                                 float(par['g_pas_all']['Value']))
        self.distribute_channels("axon", "g_pas", 0, 1, 0, 0, 0,
                                 float(par['g_pas_all']['Value']))
        self.distribute_channels("dend", "g_pas", 0, 1, 0, 0, 0,
                                 float(par['g_pas_all']['Value']))

        self.distribute_channels("soma", "gbar_naf", 0, 1, 0, 0, 0,
                                 float(par['gbar_naf_somatic']['Value']))
        self.distribute_channels("soma", "gbar_kaf", 0, 1, 0, 0, 0,
                                 float(par['gbar_kaf_somatic']['Value']))
        self.distribute_channels("soma", "gbar_kas", 0, 1, 0, 0, 0,
                                 float(par['gbar_kas_somatic']['Value']))
        self.distribute_channels("soma", "gbar_kdr", 0, 1, 0, 0, 0,
                                 float(par['gbar_kdr_somatic']['Value']))
        self.distribute_channels("soma", "gbar_kir", 0, 1, 0, 0, 0,
                                 float(par['gbar_kir_somatic']['Value']))
        self.distribute_channels("soma", "gbar_sk", 0, 1, 0, 0, 0,
                                 float(par['gbar_sk_somatic']['Value']))
        self.distribute_channels("soma", "gbar_bk", 0, 1, 0, 0, 0,
                                 float(par['gbar_bk_somatic']['Value']))

        self.distribute_channels("axon", "gbar_naf", 3, 1, 1.1, 30, 500,
                                 float(par['gbar_naf_axonal']['Value']))
        self.distribute_channels("axon", "gbar_kas", 0, 1, 0, 0, 0,
                                 float(par['gbar_kas_axonal']['Value']))
        self.distribute_channels("dend", "gbar_naf", 1, 0.1, 0.9, 60.0, 10.0,
                                 float(par['gbar_naf_basal']['Value']))
        self.distribute_channels("dend", "gbar_kaf", 1, 1, 0.5, 120.0, -30.0,
                                 float(par['gbar_kaf_basal']['Value']))

        self.distribute_channels("dend", "gbar_kas", 2, 1, 9.0, 0.0, -5.0,
                                 float(par['gbar_kas_basal']['Value']))
        self.distribute_channels("dend", "gbar_kdr", 0, 1, 0, 0, 0,
                                 float(par['gbar_kdr_basal']['Value']))
        self.distribute_channels("dend", "gbar_kir", 0, 1, 0, 0, 0,
                                 float(par['gbar_kir_basal']['Value']))
        self.distribute_channels("dend", "gbar_sk", 0, 1, 0, 0, 0,
                                 float(par['gbar_sk_basal']['Value']))
        self.distribute_channels("dend", "gbar_bk", 0, 1, 0, 0, 0,
                                 float(par['gbar_bk_basal']['Value']))

        self.distribute_channels("soma", "pbar_cal12", 0, 1, 0, 0, 0, 1e-5)
        self.distribute_channels("soma", "pbar_cal13", 0, 1, 0, 0, 0, 1e-6)
        self.distribute_channels("soma", "pbar_car", 0, 1, 0, 0, 0, 1e-4)
        self.distribute_channels("soma", "pbar_can", 0, 1, 0, 0, 0, 3e-5)
        self.distribute_channels("dend", "pbar_cal12", 0, 1, 0, 0, 0, 1e-5)
        self.distribute_channels("dend", "pbar_cal13", 0, 1, 0, 0, 0, 1e-6)
        self.distribute_channels("dend", "pbar_car", 0, 1, 0, 0, 0, 1e-4)
        self.distribute_channels("dend", "pbar_cat32", 1, 0, 1.0, 120.0, -30.0,
                                 1e-7)
        self.distribute_channels("dend", "pbar_cat33", 1, 0, 1.0, 120.0, -30.0,
                                 1e-8)
Example #29
0
PARALLEL_ENV = 1
h.load_file("import3d.hoc")
h.load_file("nrngui.hoc")
h("objref cell, tobj")

path = "../"
morph_file = path + "Morphs/2013_03_06_cell08_876_H41_05_Cell2.ASC"
model_file = "cell0603_08_model_cm_0_45"
model_path = path + "PassiveModels/"
print os.getcwd()
h.load_file(model_path + model_file + ".hoc")
h.execute("cell = new " + model_file + "()")  #replace?
nl = h.Import3d_Neurolucida3()
nl.quiet = 1
nl.input(morph_file)
imprt = h.Import3d_GUI(nl, 0)
imprt.instantiate(h.cell)
HCell = h.cell
HCell.geom_nseg()
HCell.create_model()
HCell.biophys()

T_DATA, V_DATA = read_epsp_file(PATH_exp + expname + ".dat")
h.dt = T_DATA[1] - T_DATA[0]
h.steps_per_ms = 1.0 / h.dt
h.tstop = T_DATA[-1]

V_DATA_Neuron = h.Vector(V_DATA.size)
for i, v in enumerate(V_DATA):
    V_DATA_Neuron.x[i] = v
Example #30
0
def run_RTHW(WRITE_TO_FILE=1,
             output_filename="rise_and_width_synapses_locations.txt"):
    # creating the model
    h.load_file("import3d.hoc")
    h.load_file("nrngui.hoc")
    h("objref cell, tobj")
    morph_file = "../morphs/2013_03_06_cell08_876_H41_05_Cell2.ASC"
    model_file = "cell0603_08_model_cm_0_45"
    model_path = "../PassiveModels/"
    h.load_file(model_path + model_file + ".hoc")
    h.execute("cell = new " + model_file + "()")
    nl = h.Import3d_Neurolucida3()
    nl.quiet = 1
    nl.input(morph_file)
    imprt = h.Import3d_GUI(nl, 0)
    imprt.instantiate(h.cell)
    HCell = h.cell
    HCell.geom_nseg()
    HCell.create_model()
    HCell.biophys()

    PLOT_MODE = 0

    TAU_1 = 0.3
    TAU_2 = 1.8
    E_SYN = 0
    WEIGHT = 0.0003
    E_PAS = -86
    Spike_time = 10
    DELAY = 0
    NUM_OF_SYNAPSES = 1
    DT = 0.01

    h.tstop = 100
    h.v_init = E_PAS
    h.steps_per_ms = 1.0 / DT
    h.dt = DT

    if WRITE_TO_FILE:
        f1 = open(output_filename, 'w+')

    Stim1 = h.NetStim()
    Stim1.interval = 10000
    Stim1.start = Spike_time
    Stim1.noise = 0
    Stim1.number = 1

    # for a given synapse, this function run the simulation  and calculate its shape index
    def calc_rise_and_width(PLOT_MODE=0):
        Vvec = h.Vector()
        Vvec.record(HCell.soma[0](0.5)._ref_v)
        h.init(h.v_init)
        h.run()
        np_v = np.array(Vvec)
        max_idx = np.argmax(np_v)
        rise_time = max_idx * DT - Stim1.start
        half_v = E_PAS + (np_v[max_idx] - E_PAS) / 2.0

        for i in range(max_idx):
            if np_v[i] > half_v:
                rise_half = i * h.dt
                break

        for i in range(max_idx, np_v.size):
            if np_v[i] < half_v:
                decay_half = i * h.dt
                break

        half_width = decay_half - rise_half

        if PLOT_MODE:
            print "rise ,", rise_time, " half width ", half_width
            np_t = np.arange(0, h.tstop + h.dt, h.dt)
            print np_v.size, np_t.size
            plt.plot(np_t, np_v, 'b')
            plt.plot(np_t[max_idx], np_v[max_idx], 'b*')
            plt.plot(np.array([rise_half, decay_half]),
                     np.array([half_v, half_v]), 'r')
            plt.show()

        return rise_time, half_width

    output_txt = "secanme\tx\tsoma_distance\trise_time\thalf_width\n"

    h.distance(sec=HCell.soma[0])

    # run over all the electrical segments in the model.
    # in each one of them put a synapse and run the simulation.

    print "re-creating the theoretical_RTHW"
    num_secs = len([sec for sec in HCell.all])
    bar = progressbar.ProgressBar(max_value=num_secs,
                                  widgets=[
                                      ' [',
                                      progressbar.Timer(),
                                      '] ',
                                      progressbar.Bar(),
                                      ' (',
                                      progressbar.ETA(),
                                      ') ',
                                  ])
    for ix, sec in enumerate(HCell.all):
        for seg in list(sec) + [sec(1)]:
            Syn1 = h.Exp2Syn(seg.x, sec=sec)
            Syn1.e = E_SYN
            Syn1.tau1 = TAU_1
            Syn1.tau2 = TAU_2
            Con1 = h.NetCon(Stim1, Syn1)
            Con1.weight[0] = WEIGHT
            Con1.delay = DELAY

            rise_time, half_width = calc_rise_and_width()
            output_txt += sec.name() + '\t' + str(seg.x) + '\t' + str(
                h.distance(seg.x, sec=sec)) + '\t'
            output_txt += str(rise_time) + '\t' + str(half_width) + '\n'
        bar.update(ix)

    if WRITE_TO_FILE:
        f1.write(output_txt)
        f1.close()

    return output_txt.strip().split("\n")