Example #1
0
    def test_get_multi_dipole_potential00(self):
        neuron.h('forall delete_section()')
        soma = neuron.h.Section(name='soma')
        dend1 = neuron.h.Section(name='dend1')
        dend2 = neuron.h.Section(name='dend2')
        dend3 = neuron.h.Section(name='dend3')
        dend4 = neuron.h.Section(name='dend4')
        dend5 = neuron.h.Section(name='dend5')
        dend1.connect(soma(0.5), 0)
        dend2.connect(dend1(1.0), 0)
        dend3.connect(dend2(1.0), 0)
        dend4.connect(dend3(1.0), 0)
        dend5.connect(dend4(1.0), 0)
        morphology = neuron.h.SectionList()
        morphology.wholetree()
        electrode_locs = np.array([[0., 0., 10000.]])
        cell, electrode = cell_w_synapse_from_sections_w_electrode(morphology, electrode_locs)
        sigma = 0.3
        t_point = 0

        MD_inf = LFPy.InfiniteVolumeConductor(sigma)
        pot_MD = MD_inf.get_multi_dipole_potential(cell, electrode_locs)
        pot_cb = electrode.LFP

        np.testing.assert_almost_equal(pot_MD, pot_cb)
        np.testing.assert_allclose(pot_MD, pot_cb, rtol=1E-4)
Example #2
0
def initModel(h,par,vecpar,recpar, verbose):
    '''
    Initializes the model.
    Creates the axon and so on.
    '''
    passValuesToNeuron(par,verb=verbose)
    h('{load_file("MRGnodeHFS.hoc")}')
    passValuesToNeuron(vecpar,[a for a in vecpar.keys()],verb=verbose)
	#h('{load_file("nrngui.hoc")}')
	#h('{load_proc("nrnmainmenu")}')
    h('{buildModel()}')
    if verbose:
        print("Passed parameters and built model.")
    # insert recorders and record action potential timestamps!
    segmentsToRecordV = [];
    segmentsNames = [int(h.intrinsicNode), int(h.HFSreferenceNode), int(h.axonnodes-1)] #segments to record
    for ii in segmentsNames:
       	segmentsToRecordV.append(h.node[ii](0.5))
    rec = None
    for ii in range(0,len(segmentsToRecordV)):
       	rec = insertRecorders(segmentsToRecordV[ii],{'node'+str(segmentsNames[ii]):'_ref_v'},rec)
    h.node[int(h.axonnodes-1)].push()
    apc = h.APCount(h.node[int(h.axonnodes-1)](0.5))
    apc.thresh               = 0
    rec['apc']               = h.Vector()
    apc.record(rec['apc'])
    #rec['electrodeWaveform'] = h.rec_electrode
    if verbose:
        print("Inserted recorders and APCount. Returning recorders.")
    ##########################################################################
    return rec
Example #3
0
def passive_soma(quad, show=False):
  """
  Creates the model with basic pyramidal passive properties.
  """
  # Load the hoc into neuron
  h('xopen(%s)' %quad.hocfile)
  h.load_file('stdrun.hoc')
  seclist = list(h.allsec())
  for sec in seclist:
    sec.insert('pas')
    sec.Ra = 200.
  
  # Current injection into soma or tip
  soma_sec = return_soma_seg(quad, h)
  stim_loc = 0.
  stim = h.IClamp(stim_loc, sec=soma_sec)
  stim.delay = 1 # ms
  stim.dur = 1 # ms
  stim.amp = 20 # nA
  
  # Run sim and record data
  (v, labels) = ez_record(h) # PyNeuron to record all compartments
  t, I = h.Vector(), h.Vector()
  t.record(h._ref_t)
  I.record(stim._ref_i)
  h.init()
  h.tstop = 10 # s?
  h.run()
  v = ez_convert(v) # Convert v to numpy 2D array
  
  # If show, plot, else just return v
  if show:
Example #4
0
    def setup_sections(self):
        start = h.startsw()
        
        ###################################################
        # set up sections
        self.sections = []
        # old style, but it is need for section_name in hoc
        h(self.section_def_template % (self.name, len(self.tree)))
        for sec in h.allsec():
            self.sections.append(sec)


        ###################################################
        # connect sections
        for i,sec in enumerate(self.sections):
            parent = self.tree[i]
            #print "%d to %d" % (i, tree[i])
            if(parent != 0):
                sec.connect(self.sections[parent-1], 1, 0)

        self.num_compartment = 0
        for sec in h.allsec():
            self.num_compartment += 1

        self.setup_time += h.startsw() - start
Example #5
0
    def alloc_synapse_ff(self,r,post_syn,cellind,k,gidn,i):

        NCELL=self.NCELL
        SIZE=self.SIZE
        COMM = self.COMM
        RANK=self.RANK
        #from neuron import h
        h=self.h  
        pc=h.ParallelContext()
        polarity = 0        
        polarity=int(h.Cell[int(cellind)].polarity)
        if polarity==1:
            #TODO pickle load the graphs here instead of making them manually.
            self.ecm[i][gidn] = self.ecm[i][gidn] + 1
            self.ecg.add_edge(i,gidn,weight=r/0.4)
            assert np.sum(self.ecm)!=0
        else:
            self.icm[i][gidn] = self.icm[i][gidn] + 1
            self.icg.add_edge(i,gidn,weight=r/0.4)
            assert np.sum(self.icm)!=0                
            #TODO Add other edge attributes like secnames etc.
        print post_syn
        h('objref syn_')   
        h(post_syn)
        syn_=h.syn_
        h.syn_.cid=i
        h.Cell[cellind].ampalist.append(h.syn_)
        h.Cell[cellind].div.append(k['gid'])
        h.Cell[cellind].gvpre.append(k['gid'])
        nc=pc.gid_connect(k['gid'],syn_)                                        
        nc.threshold = -20
        nc.delay=1+r/0.4
        nc.weight[0]=r/0.4    
        self.nclist.append(nc)
Example #6
0
def test_current_balance_synapse_at_section_end():

    h('synapse.loc(0)')
    cell.initialize(dt=0.025)
    t, I = cell.integrate(1)
    coord = cell.get_seg_coords()
    assert (np.abs(total_current(coord, I))<1e-6).all()
Example #7
0
def test_current_balance_synapse_in_segment():
    h('synapse.loc(0.1)')
    h('soma {insert pas}')
    cell.initialize(dt=0.025)
    t, I = cell.integrate(1)
    coord = cell.get_seg_coords()
    assert (np.abs(total_current(coord, I))<1e-6).all()
Example #8
0
 def useSTDP(self, mechanism, parameters, ddf):
     """
     Set this connection to use spike-timing-dependent plasticity.
     
     `mechanism`  -- the name of an NMODL mechanism that modifies synaptic
                     weights based on the times of pre- and post-synaptic spikes.
     `parameters` -- a dictionary containing the parameters of the weight-
                     adjuster mechanism.
     `ddf`        -- dendritic delay fraction. If ddf=1, the synaptic delay
                     `d` is considered to occur entirely in the post-synaptic
                     dendrite, i.e., the weight adjuster receives the pre-
                     synaptic spike at the time of emission, and the post-
                     synaptic spike a time `d` after emission. If ddf=0, the
                     synaptic delay is considered to occur entirely in the
                     pre-synaptic axon.
     """
     self.ddf = ddf
     self.weight_adjuster = getattr(h, mechanism)(0.5)
     self.pre2wa = state.parallel_context.gid_connect(int(self.source), self.weight_adjuster)
     self.pre2wa.threshold = self.nc.threshold
     self.pre2wa.delay = self.nc.delay * (1-ddf)
     self.pre2wa.weight[0] = 1
     # directly create NetCon as wa is on the same machine as the post-synaptic cell
     self.post2wa = h.NetCon(self.target._cell.source, self.weight_adjuster,
                             sec=self.target._cell.source_section)
     self.post2wa.threshold = 1
     self.post2wa.delay = self.nc.delay * ddf
     self.post2wa.weight[0] = -1
     for name, value in parameters.items():
         setattr(self.weight_adjuster, name, value)
     # setpointer
     i = len(h.plastic_connections)
     h.plastic_connections.append(self)
     h('setpointer plastic_connections._[%d].weight_adjuster.wsyn, plastic_connections._[%d].nc.weight' % (i,i))
Example #9
0
    def test_calc_potential_from_multi_dipoles01(self):
        neuron.h('forall delete_section()')
        soma = neuron.h.Section(name='soma')
        dend1 = neuron.h.Section(name='dend1')
        dend2 = neuron.h.Section(name='dend2')
        dend1.connect(soma(0.5), 0)
        dend2.connect(dend1(1.0), 0)
        morphology = neuron.h.SectionList()
        morphology.wholetree()
        radii = [300, 400, 500, 600]
        sigmas = [0.3, 1.5, 0.015, 0.3]
        electrode_locs = np.array([[0., 0., 290.],
                                   [10., 90., 300.],
                                   [-90, 50., 400.],
                                   [110.3, -100., 500.]])
        cell = cell_w_synapse_from_sections(morphology)
        t_point = -1

        MD_4s = LFPy.FourSphereVolumeConductor(radii, sigmas, electrode_locs)
        dipoles, dipole_locs = cell.get_multi_current_dipole_moments()
        p = dipoles[:,t_point,:]
        Np = p.shape[0]
        Nt = 1
        Ne = electrode_locs.shape[0]
        pot_MD = MD_4s.calc_potential_from_multi_dipoles(cell)[:,t_point]
        pot_sum = np.zeros((Ne, Nt))
        for i in range(Np):
            dip = np.array([p[i]])
            dip_loc = dipole_locs[i]
            fs = LFPy.FourSphereVolumeConductor(radii, sigmas, electrode_locs)
            pot = fs.calc_potential(dip, dip_loc)
            pot_sum += pot
        pot_sum = pot_sum.reshape(4)
        np.testing.assert_almost_equal(pot_MD, pot_sum)
        np.testing.assert_allclose(pot_MD, pot_sum, rtol=1E-4)
Example #10
0
def test_point_process_coord():
    h('synapse.loc(0.15)')
    h('access soma')
    x, y, z = cell.get_pp_coord(h.synapse)
    assert x == 1.5
    assert y == 0
    assert z == 0
Example #11
0
def test_get_point_processes():
    h('synapse.loc(0.15)')
    h('access soma')
    pps = cell.get_point_processes()
    assert len(pps)==1
    assert pps[0][0].same(h.synapse)
    assert pps[0][1] == 1.5
def load_morphology(filename):
    swc = h.Import3d_SWC_read()
    swc.input(filename)

    imprt = h.Import3d_GUI(swc, 0)
    h("objref this")
    imprt.instantiate(h.this)
Example #13
0
File: gui.py Project: nrnhines/nrn
 def _do_callback(self):
     if callable(self._callable):
         self._callable()
     else:
         h(self._callable)
     if self._thread is not None:
         self.start()
Example #14
0
    def create_head(self, neck, head_vol, big_spine):
        """Create the head of the spine and populate it with the right channels"""
        name_sec = self.id + "_head"
        h("create " + name_sec)
        head = getattr(h, name_sec)
        
        
        if big_spine:
            head.L = 1
            head.diam = 1.175
            r = head.diam/2.
            self.head_vol = math.pi * r * r * head.L
        else:
            head.L = 0.5
            head.diam = math.sqrt(head_vol / (head.L * math.pi) ) * 2
        
        self.Ra = 150.0
        head.nseg = 1
        head.connect(neck)
        
        #head.insert("pas")
        head.insert("kir")
        head.insert("can")
        head.insert("caq")
        head.insert("car")
        head.insert("skkca")

        h.factors_caltrack()
        head.insert("caltrack")
        
        h.factors_catrack()
        head.insert("catrack")
        
        return head
Example #15
0
 def alloc_synapse(self,r,h,sec,seg,cellind,secnames,k,i,gidn):
     '''
     Allocate a synaptic cleft from exhuastive collision detection.
     '''
     NCELL=self.NCELL
     SIZE=self.SIZE
     COMM = self.COMM
     RANK=self.RANK
     from neuron import h
     pc=h.ParallelContext()
     h=self.h
     self.visited[i][gidn] = self.visited[i][gidn] + 1              
     if r < 2.5: #2.5 micro metres.
         polarity = 0        
         polarity=int(h.Cell[int(cellind)].polarity)
         h('objref syn_')        
         if int(polarity) == int(0):
             post_syn = secnames + ' ' + 'syn_ = new FastInhib(' + str(seg.x) + ')'
             #post_syn = secnames + ' ' + 'syn_ = new GABAa(' + str(seg.x) + ')'
             self.icm[i][gidn] = self.icm[i][gidn] + 1
             self.icg.add_edge(i,gidn,weight=r/0.4)
             self.icg[i][gidn]['post_loc']=secnames
             self.icg[i][gidn]['pre_loc']=k['secnames']
             assert np.sum(self.icm)!=0
     
         else:
             if (k['gid']%2==0):
                 #TODO Find standard open source brain affiliated code for NMDA synapse
                 post_syn = secnames + ' ' + 'syn_ = new AmpaNmda(' + str(seg.x) + ')'                       
                 self.ecm[i][gidn] = self.ecm[i][gidn] + 1
                 self.ecg.add_edge(i,gidn,weight=r/0.4)
                 self.ecg[i][gidn]['post_loc']=secnames
                 self.ecg[i][gidn]['pre_loc']=k['secnames']
                 self.seclists.append(secnames)
                 assert np.sum(self.ecm)!=0
             else:
                 #TODO Find standard open source brain affiliated code for NMDA synapse
                 post_syn = secnames + ' ' + 'syn_ = new ExpSid(' + str(seg.x) + ')'                       
                 self.ecm[i][gidn] = self.ecm[i][gidn] + 1
                 self.ecg.add_edge(i,gidn,weight=r/0.4)
                 self.ecg[i][gidn]['post_loc']=secnames
                 self.ecg[i][gidn]['pre_loc']=k['secnames']
                 self.seclists.append(secnames)
                 assert np.sum(self.ecm)!=0
     
         h(post_syn)
         print post_syn
         self.synapse_list.append((r,post_syn,cellind,k,gidn,i))
         syn_=h.syn_
         h.syn_.cid=i
         h.Cell[cellind].ampalist.append(h.syn_)
         h.Cell[cellind].div.append(k['gid'])
         h.Cell[cellind].gvpre.append(k['gid'])
         nc=pc.gid_connect(k['gid'],syn_)                                        
         nc.threshold = -20
         nc.delay=1+r/0.4
         nc.weight[0]=r/0.4    
         self.nclist.append(nc)
Example #16
0
def measure_fi (gid, pop_name, v_init, env, cell_dict={}):

    biophys_cell = init_biophys_cell(env, pop_name, gid, register_cell=False, cell_dict=cell_dict)
    hoc_cell = biophys_cell.hoc_cell

    soma = list(hoc_cell.soma)[0]
    h.dt = 0.025

    prelength = 1000.0
    mainlength = 2000.0

    tstop = prelength+mainlength
    
    stimdur = 1000.0

    
    stim1 = h.IClamp(soma(0.5))
    stim1.delay = prelength
    stim1.dur   = stimdur
    stim1.amp   = 0.2

    h('objref tlog, Vlog, spikelog')

    h.tlog = h.Vector()
    h.tlog.record (h._ref_t)

    h.Vlog = h.Vector()
    h.Vlog.record (soma(0.5)._ref_v)

    h.spikelog = h.Vector()
    nc = biophys_cell.spike_detector
    nc.record(h.spikelog)
    
    h.tstop = tstop

    frs = []
    stim_amps = [stim1.amp]
    for it in range(1, 9):

        neuron_utils.simulate(v_init, prelength, mainlength)
        
        logger.info("fi_test: stim1.amp = %g spikelog.size = %d\n" % (stim1.amp, h.spikelog.size()))
        stim1.amp = stim1.amp + 0.1
        stim_amps.append(stim1.amp)
        frs.append(h.spikelog.size())
        h.spikelog.clear()
        h.tlog.clear()
        h.Vlog.clear()


    results = {'FI_curve_amplitude': np.asarray(stim_amps, dtype=np.float32),
               'FI_curve_frequency': np.asarray(frs, dtype=np.float32) }

    env.synapse_attributes.del_syn_id_attr_dict(gid)
    if gid in env.biophys_cells[pop_name]:
        del env.biophys_cells[pop_name][gid]

    return results
Example #17
0
    def test_Network_04(self):
        cellParameters = dict(
            morphology=os.path.join(LFPy.__path__[0], 'test', 'ball_and_sticks_w_lists.hoc'),
            templatefile=os.path.join(LFPy.__path__[0], 'test', 'ball_and_stick_template.hoc'),
            templatename='ball_and_stick_template',
            templateargs=None,
            passive=True,
            dt=2**-3,
            tstop=100,
            delete_sections=False,
        )
        
        synapseParameters = dict(idx=0, syntype='Exp2Syn', weight=0.002,
                                 tau1=0.1, tau2=0.1, e=0)
        
        populationParameters = dict(
            CWD=None,
            CELLPATH=None,
            Cell=LFPy.NetworkCell,
            cell_args = cellParameters,
            pop_args = dict(
                radius=100,
                loc=0.,
                scale=20.),
            rotation_args = dict(x=0, y=0),
            POP_SIZE = 1,
            name = 'test',
        )
        networkParameters = dict(
            dt=2**-3,
            tstart=0.,
            tstop=100.,
            v_init=-70.,
            celsius=6.3,
            OUTPUTPATH='tmp_testNetworkPopulation'
            )
        # set up
        network = LFPy.Network(**networkParameters)
        network.create_population(**populationParameters)
        
        cell = network.populations['test'].cells[0]
        
        # create synapses
        synlist = []
        numsynapses = 2
        for i in range(numsynapses):
            synlist.append(LFPy.Synapse(cell=cell, **synapseParameters))
            synlist[-1].set_spike_times(np.array([10+(i*10)]))
        
        network.simulate()
        
        # test that the input results in the correct amount of PSPs
        np.testing.assert_equal(ss.argrelextrema(cell.somav, np.greater)[0].size, numsynapses)

        # clean up
        network.pc.gid_clear()
        os.system('rm -r tmp_testNetworkPopulation')
        neuron.h('forall delete_section()')
def conduct_parallel_NEURON(population_name, last_point, N_index_glob, N_index,
                            Ampl_scale, t_steps, n_segments, dt, tstop,
                            n_pulse, v_init, output):
    os.chdir("..")

    #    nodes=[]
    #    for point_inx in range(n_segments):
    #        nodes_point_in_time=np.load(os.environ['PATIENTDIR']+'/Points_in_time/Signal_t_conv'+str(point_inx+N_index*n_segments+last_point)+'.npy') #get solution for each compartment in time for one neuron
    #        nodes.append(nodes_point_in_time*(1000)*Ampl_scale)    #convert to mV
    #    nodes=np.asarray(nodes)
    #    nodes = nodes.ravel()
    #
    #    V_art=np.zeros((n_segments,t_steps),float)
    #
    #    for i in range(n_segments):
    #        V_art[i,:]=nodes[(i*t_steps):((i*t_steps)+t_steps)]

    #to distinguish axons in different populations, we indexed them with the global index of the last compartment
    axon_in_time = np.load(os.environ['PATIENTDIR'] +
                           '/Axons_in_time/Signal_t_conv' +
                           str(n_segments - 1 + N_index * n_segments +
                               last_point) + '.npy')
    V_art = np.zeros((n_segments, t_steps), float)
    for i in range(n_segments):
        V_art[i, :] = axon_in_time[i, :] * (-1000) * Ampl_scale  #convert to mV

    #only if we want to save potential in time on axons
    #np.save('Field_on_axons_in_time/'+str(population_name)+'axon_'+str(N_index_glob), V_art)

    os.chdir("Axon_files/")

    n.h('{load_file("axon4pyfull.hoc")}')

    n.h.deletenodes()
    n.h.createnodes()

    n.h.dependent_var()
    n.h.initialize()
    n.h.setupAPWatcher_0()  # 'left' end of axon
    n.h.setupAPWatcher_1()  # 'right' end of axon

    n.h.dt = dt
    n.h.tstop = tstop
    n.h.n_pulse = n_pulse
    n.h.v_init = v_init

    for i in range(0, V_art.shape[0]):
        n.h.wf[i] = n.h.Vector(V_art[
            i, :])  # feed the potential in time for compartment i to NEURON

    n.h.stimul()
    n.h.run()
    spike = n.h.stoprun - 0.5

    if spike == 0.5:
        return output.put([N_index_glob, N_index])
    else:
        return output.put([N_index_glob, -1])
Example #19
0
    def _setup_plasticity(self, synapse_type, parameters):
        """
        Set this connection to use spike-timing-dependent plasticity.

        `mechanism`  -- the name of an NMODL mechanism that modifies synaptic
                        weights based on the times of pre- and post-synaptic spikes.
        `parameters` -- a dictionary containing the parameters of the weight-
                        adjuster mechanism.
        """
        mechanism = synapse_type.model
        self.weight_adjuster = getattr(h, mechanism)(0.5)
        if synapse_type.postsynaptic_variable == 'spikes':
            parameters['allow_update_on_post'] = int(
                False)  # for compatibility with NEST
            self.ddf = parameters.pop('dendritic_delay_fraction')
            # If ddf=1, the synaptic delay
            # `d` is considered to occur entirely in the post-synaptic
            # dendrite, i.e., the weight adjuster receives the pre-
            # synaptic spike at the time of emission, and the post-
            # synaptic spike a time `d` after emission. If ddf=0, the
            # synaptic delay is considered to occur entirely in the
            # pre-synaptic axon.
        elif synapse_type.postsynaptic_variable is None:
            self.ddf = 0
        else:
            raise NotImplementedError(
                "Only post-synaptic-spike-dependent mechanisms available for now."
            )
        self.pre2wa = state.parallel_context.gid_connect(
            int(self.presynaptic_cell), self.weight_adjuster)
        self.pre2wa.threshold = self.nc.threshold
        self.pre2wa.delay = self.nc.delay * (1 - self.ddf)
        if self.pre2wa.delay > 1e-9:
            self.pre2wa.delay -= 1e-9  # we subtract a small value so that the synaptic weight gets updated before it is used.
        if synapse_type.postsynaptic_variable == 'spikes':
            # directly create NetCon as wa is on the same machine as the post-synaptic cell
            self.post2wa = h.NetCon(
                self.postsynaptic_cell._cell.source,
                self.weight_adjuster,
                sec=self.postsynaptic_cell._cell.source_section)
            self.post2wa.threshold = 1
            self.post2wa.delay = self.nc.delay * self.ddf
            self.post2wa.weight[0] = -1
            self.pre2wa.weight[0] = 1
        else:
            self.pre2wa.weight[0] = self.nc.weight[0]
        parameters.pop('x', None)  # for the Tsodyks-Markram model
        parameters.pop(
            'y', None)  # would be better to actually use these initial values
        for name, value in parameters.items():
            setattr(self.weight_adjuster, name, value)
        if mechanism == 'TsodyksMarkramWA':  # or could assume that any weight_adjuster parameter called "tau_syn" should be set like this
            self.weight_adjuster.tau_syn = self.nc.syn().tau
        # setpointer
        i = len(h.plastic_connections)
        h.plastic_connections.append(self)
        h('setpointer plastic_connections._[%d].weight_adjuster.wsyn, plastic_connections._[%d].nc.weight'
          % (i, i))
Example #20
0
    def _setup_plasticity(self, synapse_type, parameters):
        """
        Set this connection to use spike-timing-dependent plasticity.

        `mechanism`  -- the name of an NMODL mechanism that modifies synaptic
                        weights based on the times of pre- and post-synaptic spikes.
        `parameters` -- a dictionary containing the parameters of the weight-
                        adjuster mechanism.
        """
        mechanism = synapse_type.model
        self.weight_adjuster = getattr(h, mechanism)(0.5)
        if synapse_type.postsynaptic_variable == "spikes":
            parameters["allow_update_on_post"] = int(False)  # for compatibility with NEST
            self.ddf = parameters.pop("dendritic_delay_fraction")
            # If ddf=1, the synaptic delay
            # `d` is considered to occur entirely in the post-synaptic
            # dendrite, i.e., the weight adjuster receives the pre-
            # synaptic spike at the time of emission, and the post-
            # synaptic spike a time `d` after emission. If ddf=0, the
            # synaptic delay is considered to occur entirely in the
            # pre-synaptic axon.
        elif synapse_type.postsynaptic_variable is None:
            self.ddf = 0
        else:
            raise NotImplementedError("Only post-synaptic-spike-dependent mechanisms available for now.")
        self.pre2wa = state.parallel_context.gid_connect(int(self.presynaptic_cell), self.weight_adjuster)
        self.pre2wa.threshold = self.nc.threshold
        self.pre2wa.delay = self.nc.delay * (1 - self.ddf)
        if self.pre2wa.delay > 1e-9:
            self.pre2wa.delay -= (
                1e-9
            )  # we subtract a small value so that the synaptic weight gets updated before it is used.
        if synapse_type.postsynaptic_variable == "spikes":
            # directly create NetCon as wa is on the same machine as the post-synaptic cell
            self.post2wa = h.NetCon(
                self.postsynaptic_cell._cell.source,
                self.weight_adjuster,
                sec=self.postsynaptic_cell._cell.source_section,
            )
            self.post2wa.threshold = 1
            self.post2wa.delay = self.nc.delay * self.ddf
            self.post2wa.weight[0] = -1
            self.pre2wa.weight[0] = 1
        else:
            self.pre2wa.weight[0] = self.nc.weight[0]
        parameters.pop("x", None)  # for the Tsodyks-Markram model
        parameters.pop("y", None)  # would be better to actually use these initial values
        for name, value in parameters.items():
            setattr(self.weight_adjuster, name, value)
        if (
            mechanism == "TsodyksMarkramWA"
        ):  # or could assume that any weight_adjuster parameter called "tau_syn" should be set like this
            self.weight_adjuster.tau_syn = self.nc.syn().tau
        # setpointer
        i = len(h.plastic_connections)
        h.plastic_connections.append(self)
        h("setpointer plastic_connections._[%d].weight_adjuster.wsyn, plastic_connections._[%d].nc.weight" % (i, i))
Example #21
0
 def __init__(self):
     """
     Create an `FinitializeHandler` object in Hoc, which will call the
     `_initialize()` method when NEURON is initialized.
     """
     h('objref initializer')
     h.initializer = self
     self.fih = h.FInitializeHandler(1, "initializer._initialize()")
     self.clear()
Example #22
0
def record_spiketimes(sec, pos=0.5, threshold=-20.0):
    if not hasattr(h, 'nil'):
        h('objref nil')
    sec.push()
    nc = h.NetCon(sec(0.5)._ref_v, h.nil, threshold, 0.0, 1.0)
    h.pop_section()
    vec = h.Vector()
    nc.record(vec)
    return nc, vec
Example #23
0
def hoc_execute_quiet(arg):
    with open(os.devnull, 'wb') as null:
        fd = sys.stdout.fileno()
        keep = os.dup(fd)
        sys.stdout.flush()
        os.dup2(null.fileno(), fd)
        h(arg)
        sys.stdout.flush()
        os.dup2(keep, fd)
Example #24
0
    def destroy(self):
        """
        Takes care that neuron objects and python objects reffering to the cell
        are destroyed.

        At this point it actually destroys all the sections.
        """
        neuron.h('objref tuft')
        super(self.__class__, self).destroy()
Example #25
0
 def __init__(self):
     """
     Create an `FinitializeHandler` object in Hoc, which will call the
     `_initialize()` method when NEURON is initialized.
     """
     h('objref initializer')
     h.initializer = self
     self.fih = h.FInitializeHandler(1, "initializer._initialize()")
     self.clear()
Example #26
0
def reinit_diam(sec, diam_bounds):
    """
    For a node associated with a hoc section that is a tapered cylinder, every time the spatial resolution
    of the section (nseg) is changed, the section diameters must be reinitialized. This method checks the
    node's content dictionary for diameter boundaries and recalibrates the hoc section associated with this node.
    """
    if diam_bounds is not None:
        diam1, diam2 = diam_bounds
        h(f'diam(0:1)={diam1}:{diam2}', sec=sec)
def connectgjs(env):
    rank = int(env.pc.id())
    nhosts = int(env.pc.nhost())

    datasetPath = os.path.join(env.datasetPrefix, env.datasetName)

    gapjunctions = env.gapjunctions
    if env.gapjunctionsFile is None:
        gapjunctionsFilePath = None
    else:
        gapjunctionsFilePath = os.path.join(datasetPath, env.gapjunctionsFile)

    if gapjunctions is not None:

        h('objref gjlist')
        h.gjlist = h.List()
        if env.verbose:
            if env.pc.id() == 0:
                print gapjunctions
        datasetPath = os.path.join(env.datasetPrefix, env.datasetName)
        (graph, a) = bcast_graph(env.comm, gapjunctionsFilePath, attributes=True)

        ggid = 2e6
        for name in gapjunctions.keys():
            if env.verbose:
                if env.pc.id() == 0:
                    print "*** Creating gap junctions %s" % name
            prj = graph[name]
            attrmap = a[name]
            weight_attr_idx = attrmap['Weight'] + 1
            dstbranch_attr_idx = attrmap['Destination Branch'] + 1
            dstsec_attr_idx = attrmap['Destination Section'] + 1
            srcbranch_attr_idx = attrmap['Source Branch'] + 1
            srcsec_attr_idx = attrmap['Source Section'] + 1
            for destination in sorted(prj.keys()):
                edges = prj[destination]
                sources = edges[0]
                weights = edges[weight_attr_idx]
                dstbranches = edges[dstbranch_attr_idx]
                dstsecs = edges[dstsec_attr_idx]
                srcbranches = edges[srcbranch_attr_idx]
                srcsecs = edges[srcsec_attr_idx]
                for i in range(0, len(sources)):
                    source = sources[i]
                    srcbranch = srcbranches[i]
                    srcsec = srcsecs[i]
                    dstbranch = dstbranches[i]
                    dstsec = dstsecs[i]
                    weight = weights[i]
                    if env.pc.gid_exists(source):
                        h.mkgap(env.pc, h.gjlist, source, srcbranch, srcsec, ggid, ggid + 1, weight)
                    if env.pc.gid_exists(destination):
                        h.mkgap(env.pc, h.gjlist, destination, dstbranch, dstsec, ggid + 1, ggid, weight)
                    ggid = ggid + 2

            del graph[name]
Example #28
0
def test_ste():

    m1 = model()
    # one state ste with two self transitions
    var = m1["s"](0.5)._ref_v
    thresh1 = h.ref(-50)
    thresh2 = h.ref(-10)
    result = []
    ste = h.StateTransitionEvent(1)
    ste.transition(0, 0, var, thresh1, (act, (1, m1, thresh1, result)))
    ste.transition(0, 0, var, thresh2, (act, (2, m1, thresh2, result)))
    fih = h.FInitializeHandler((on_finit, (ste, result)))

    run(5)
    print("final v=%g" % m1["s"](0.5).v)
    chk_result(2, result, m1)

    h.cvode_active(1)
    run(20)
    chk_result(2, result, m1)

    h.cvode_active(1)
    h.cvode.condition_order(2)
    run(5)
    chk_result(2, result, m1)

    h.cvode.condition_order(1)
    h.cvode_active(0)

    # ste associated with point process
    del fih, ste
    ste = h.StateTransitionEvent(2, m1["ic"])
    fih = h.FInitializeHandler((on_finit, (ste, result)))
    run(5)

    # transition with hoc callback
    h("""proc foo() { printf("foo called at t=%g\\n", t) }""")
    thresh3 = h.ref(-30)
    ste.transition(0, 0, var, thresh3, "foo()")
    run(5)

    # transition with hoc callback in hoc object
    h("""
begintemplate FooSTEtest
objref this
proc foo() { printf("foo in %s called at t=%g\\n", this, t) }
endtemplate FooSTEtest
""")
    thresh4 = h.ref(-20)
    obj = h.FooSTEtest()
    ste.transition(0, 0, var, thresh4, "foo()", obj)
    run(5)

    del ste, fih
    assert h.List("StateTransitionEvent").count() == 0
    assert h.List("FInitializeHandler").count() == 0
Example #29
0
    def test_Network_01(self):
        cellParameters = dict(
            morphology=os.path.join(LFPy.__path__[0], 'test',
                                    'ball_and_sticks_w_lists.hoc'),
            templatefile=os.path.join(LFPy.__path__[0], 'test',
                                      'ball_and_stick_template.hoc'),
            templatename='ball_and_stick_template',
            templateargs=None,
            passive=False,
            dt=2**-3,
            tstop=100,
            delete_sections=False,
        )

        populationParameters = dict(
            CWD=None,
            CELLPATH=None,
            Cell=LFPy.NetworkCell,
            cell_args=cellParameters,
            pop_args=dict(radius=100, loc=0., scale=20.),
            rotation_args=dict(x=0, y=0),
            POP_SIZE=4,
            name='test',
        )
        networkParameters = dict(dt=2**-3,
                                 tstart=0.,
                                 tstop=100.,
                                 v_init=-65.,
                                 celsius=6.3,
                                 OUTPUTPATH='tmp_testNetworkPopulation')
        # set up
        network = LFPy.Network(**networkParameters)
        network.create_population(**populationParameters)
        connectivity = network.get_connectivity_rand(pre='test',
                                                     post='test',
                                                     connprob=0.5)

        # connect and run sim
        network.connect(pre='test', post='test', connectivity=connectivity)
        SPIKES, LFP, P = network.simulate(rec_current_dipole_moment=True)

        # test output
        for population in network.populations.values():
            for cell in population.cells:
                self.assertTrue(np.all(cell.somav == network.v_init))

        self.assertTrue(np.all(P['test'] == 0.))
        self.assertTrue(P.shape[0] == cell.somav.size)
        self.assertTrue(len(LFP) == 0)

        network.pc.gid_clear()
        os.system('rm -r tmp_testNetworkPopulation')
        for population in network.populations.values():
            for cell in population.cells:
                cell.strip_hoc_objects()
        neuron.h('forall delete_section()')
Example #30
0
def run_single_test(cell_params, input_array, input_idx, hold_potential,
                    use_channels, sim_idx):

    cell_params.update({
        'v_init':
        hold_potential,
        'custom_fun': [active_declarations],  # will execute this function
        'custom_fun_args': [{
            'use_channels': use_channels,
            'hold_potential': hold_potential
        }]
    })

    neuron.h('forall delete_section()')

    cell = LFPy.Cell(**cell_params)
    noiseVec = neuron.h.Vector(input_array)
    i = 0
    syn = None
    for sec in cell.allseclist:
        for seg in sec:
            if i == input_idx:
                print "Input i" \
                      "nserted in ", sec.name()
                syn = neuron.h.ISyn(seg.x, sec=sec)
            i += 1
    if type(syn) == type(None):
        raise RuntimeError("Wrong stimuli index")
    syn.dur = 1E9
    syn.delay = 0
    noiseVec.play(syn._ref_amp, cell.timeres_NEURON)

    figfolder = 'verifications'
    if not os.path.isdir(figfolder): os.mkdir(figfolder)

    sim_params = {'rec_vmem': True, 'rec_imem': True, 'rec_variables': []}
    cell.simulate(**sim_params)

    simfolder = 'simresults'
    if not os.path.isdir(simfolder): os.mkdir(simfolder)
    simname = join(simfolder, '%d' % input_idx)

    if len(use_channels) == 0:
        simname += '_passive'
    else:
        for ion in use_channels:
            simname += '_%s' % ion
    simname += '_%+d' % hold_potential
    simname += '_sim_%d' % sim_idx
    savedata(cell, simname, input_idx)
    # recreate_Hu_figs(cell, input_idx, idx_list, cell_params, figfolder)
    plot_resonances(cell, input_idx, 0.01, [0, 460, 565, 451, 728, 303],
                    cell_params, figfolder)
    del cell
    del noiseVec
    del syn
Example #31
0
 def insert_glutamate_stim(cell, section = 'apic[63]', site = 0.5):
     gmaxS=20
     neuron.h('access %s' %section)
     glut_syn = neuron.h.glutamate(site)
     glut_syn.delay = 50
     glut_syn.ntar = 1
     glut_syn.gmax = gmaxS
     glut_syn.Nspike=2
     glut_syn.Tspike=20
     return glut_syn
Example #32
0
def create_graphs():
    h('objref py')
    h.py = h.PythonObject() # lets Hoc access Python
    h.nrnmainmenu()
    h.nrncontrolmenu()
    h.steps_per_ms = 1.0/DT

    # adding graphs
    for id in NEURONS_TO_PLOT:
        addgraph(-80, 40, "py.neurons[%d]._cell.seg.v" % id, 4)
Example #33
0
 def insert_glutamate_stim(cell, section="apic[63]", site=0.5):
     gmaxS = 10
     neuron.h("access %s" % section)
     glut_syn = neuron.h.glutamate(site)
     glut_syn.delay = 50
     glut_syn.ntar = 1.3
     glut_syn.gmax = gmaxS
     glut_syn.Nspike = 3
     glut_syn.Tspike = 20
     return glut_syn
Example #34
0
def compare_diam(filename, param_list=None):
    """Change distal dendrite's diameter"""
    diam_list = param_list
    if not diam_list:
        diam_list = [0.5, 1, 1.5, 2]
    print("diam_list:{}".format(diam_list))
    load_file(filename)
    for diam in diam_list:
        h("""ldend.diam = {}""".format(diam))
        save_run("{}_{}".format(filename, diam))
Example #35
0
def hoc_setup():
    with open(os.devnull, 'wb') as null:
        fd = sys.stdout.fileno()
        keep = os.dup(fd)
        sys.stdout.flush()
        os.dup2(null.fileno(), fd)

        neuron.h('load_file("stdrun.hoc")')
        sys.stdout.flush()
        os.dup2(keep, fd)
Example #36
0
def test_soma():
    h("""create soma""")

    assert h.soma is not None

    h.soma.L = 5.6419
    h.soma.diam = 5.6419

    assert h.soma.L == 5.6419
    assert h.soma.diam == 5.6419
Example #37
0
def query_neuron(lst, model_file):  # MOCKUP
    h.load_file(model_file)
    values = []
    aa = 0
    for item in lst:
        h('aa = ' + item)
        val = float(h.aa)
        values.append(val)
        print(f"par is {item} values is {val}")
    return values
Example #38
0
def getOrig(fileName):
    nrn.h.paramsFile = fileName
    nrn.h.psize = 1
    nrn.h("pmat = new Matrix(psize, nparams)")
    nrn.h("readMatrix(paramsFile, pmat)")
    nrn.h("runMatrix(pmat,stims)")
    nrn.h("print matOut")
    nrn.h("matOut = matOut.to_vector()")
    orig_volts = nrn.h.matOut.to_python()
    return orig_volts
Example #39
0
    def setpointers(self):
        self.caller.interpCoordinates.getSecRefs() 
        print("hello")
        for sec in h.allsec():


            if h.ismembrane("xtra", sec=sec) and h.ismembrane("extracellular", sec=sec):
                # print(sec)
                # should be a way to do this without resortin to this ugly str coding but fine for now
                neuron.h("for (x,0){ setpointer ex_xtra(x), e_extracellular(x) }")
Example #40
0
    def __init__(self):
        ############################# MORPHOLOGY ##############################
        h("GJ = 1") # 0 for no gap-junctions between GoCs
        # 0 or 1, GJ must be set prior to loading network.hoc
        h.xopen("network.hoc") # Within it is the function Goc() which

        # below are the components set as attribute to this python class
        self.GrC = h.GrC # len(h.GrC) -> 8100
        self.GoC = h.GoC # len(h.GoC) -> 225
        self.MF = h.fiber # len(h.fiber) -> 900
Example #41
0
def get_ggn(fname):
    with h5.File(fname, 'r') as fd:
        ggn_model = fd['/celltemplate'].value.decode('utf-8')
        cellname = [line for line in ggn_model.split('\n')
                    if 'begintemplate' in line]
        rest = cellname[0].partition('begintemplate')[-1]
        cellname = rest.split()[0]
        if not hasattr(h, cellname):
            h(ggn_model)
        return eval('h.{}()'.format(cellname))
Example #42
0
def test_soma():
    h('''create soma''')

    assert h.soma is not None

    h.soma.L = 5.6419
    h.soma.diam = 5.6419

    assert h.soma.L == 5.6419
    assert h.soma.diam == 5.6419
Example #43
0
    def __init__(self):
        self.x = self.y = self.z = 0

        hoc_file = "..\\mn_geometries\\burke_mn_2 - Copy"
        hoc_command = "{xopen(" + hoc_command + ")}"
        h(hoc_command)

        self.build_topology()
        self.build_subsets()
        self.define_geometry()
        self.define_biophysics()
Example #44
0
def show_plot(quad):
  """
  Plot the thing.
  """
  h('xopen(quad.hocfile)')
  plt.figure(figsize=(7,7))
  shapeax = plt.subplot(111, projection='3d')
  shapeax.view_init(75,66)
  shapeplot(h,shapeax)
  plt.show()
  return
Example #45
0
    def test_Network_01(self):
        cellParameters = dict(
            morphology=os.path.join(LFPy.__path__[0], 'test', 'ball_and_sticks_w_lists.hoc'),
            templatefile=os.path.join(LFPy.__path__[0], 'test', 'ball_and_stick_template.hoc'),
            templatename='ball_and_stick_template',
            templateargs=None,
            passive=False,
            dt=2**-3,
            tstop=100,
            delete_sections=False,
        )

        populationParameters = dict(
            CWD=None,
            CELLPATH=None,
            Cell=LFPy.NetworkCell,
            cell_args = cellParameters,
            pop_args = dict(
                radius=100,
                loc=0.,
                scale=20.),
            rotation_args = dict(x=0, y=0),
            POP_SIZE = 4,
            name = 'test',
        )
        networkParameters = dict(
            dt=2**-3,
            tstart=0.,
            tstop=100.,
            v_init=-65.,
            celsius=6.3,
            OUTPUTPATH='tmp_testNetworkPopulation'
            )
        # set up
        network = LFPy.Network(**networkParameters)
        network.create_population(**populationParameters)
        connectivity = network.get_connectivity_rand(pre='test', post='test', connprob=0.5)

        # connect and run sim
        network.connect(pre='test', post='test', connectivity=connectivity)
        SPIKES, LFP, P = network.simulate(rec_current_dipole_moment=True)

        # test output
        for population in network.populations.values():
            for cell in population.cells:
                self.assertTrue(np.all(cell.somav == network.v_init))

        self.assertTrue(np.all(P['test'] == 0.))
        self.assertTrue(P.shape[0] == cell.somav.size)
        self.assertTrue(len(LFP) == 0)

        network.pc.gid_clear()
        os.system('rm -r tmp_testNetworkPopulation')
        neuron.h('forall delete_section()')
Example #46
0
File: knox.py Project: wwlytton/AP
def insertchans():
    h.tstop = 1e3
    for vals in thalDict.values():
        for ce in vals['cel']:
            ce.soma[0].insert('hh2nafjr')
            ce.soma[0].gnabar_hh2nafjr = 0.0
    for ce in thalDict['RE']['cel']:
        sec = ce.soma[0]
        for mech in it2l:
            ce.soma[0].insert(mech)
            h('%s.gcabar_%s = 0.0' % (str(sec), mech))
Example #47
0
def measure_passive (gid, pop_name, v_init, env, prelength=1000.0, mainlength=2000.0, stimdur=500.0, cell_dict={}):


    biophys_cell = init_biophys_cell(env, pop_name, gid, register_cell=False, cell_dict=cell_dict)
    hoc_cell = biophys_cell.hoc_cell

    h.dt = env.dt

    tstop = prelength+mainlength
    
    soma = list(hoc_cell.soma)[0]
    stim1 = h.IClamp(soma(0.5))
    stim1.delay = prelength
    stim1.dur   = stimdur
    stim1.amp   = -0.1

    h('objref tlog, Vlog')
    
    h.tlog = h.Vector()
    h.tlog.record (h._ref_t)

    h.Vlog = h.Vector()
    h.Vlog.record (soma(0.5)._ref_v)
    
    h.tstop = tstop

    Rin = h.rn(hoc_cell)
    
    neuron_utils.simulate(v_init, prelength, mainlength)

    ## compute membrane time constant
    vrest  = h.Vlog.x[int(h.tlog.indwhere(">=",prelength-1))]
    vmin   = h.Vlog.min()
    vmax   = vrest
    
    ## the time it takes the system's step response to reach 1-1/e (or
    ## 63.2%) of the peak value
    amp23  = 0.632 * abs (vmax - vmin)
    vtau0  = vrest - amp23
    tau0   = h.tlog.x[int(h.Vlog.indwhere ("<=", vtau0))] - prelength

    results = {'Rin': np.asarray([Rin], dtype=np.float32),
               'vmin': np.asarray([vmin], dtype=np.float32),
               'vmax': np.asarray([vmax], dtype=np.float32),
               'vtau0': np.asarray([vtau0], dtype=np.float32),
               'tau0': np.asarray([tau0], dtype=np.float32)
               }

    env.synapse_attributes.del_syn_id_attr_dict(gid)
    if gid in env.biophys_cells[pop_name]:
        del env.biophys_cells[pop_name][gid]
        
    return results
    def __init__(self):
        h("objref cvode")  # initialize multiple order variable time step
        h("cvode = new CVode()"
          )  # integration method as it is called in hoc file
        h.xopen("start.hoc")

        # nsyn1 = 4 at line 11
        # ncells = 1 at line 79
        # nmossy = 4 at line 80
        # Notice that one should try to have nmossy = nsyn1 =/= NumSyn (synapse/MF)
        self.cell = h.GrCell[0]  # len(h.GrCell) -> 1
        self.mossy = h.Mossy  # len(h.Mossy) -> 4
Example #49
0
def setparams(params):
    params_copy = params.copy()
    keys = params.keys()
    for ikey in range(0, len(keys)):
        params_copy[keys[ikey]] = params[keys[ikey]] * defVals[keys[ikey]]

    print "setparams: params_copy = " + str(params_copy)
    for ikey in range(0, len(keys)):
        key = keys[ikey]
        print(key + " = " + str(params_copy[key]))
        h(key + " = " + str(params_copy[key]))
    h("tfunk()")
Example #50
0
def get_tempdata_address(double_escaped=0):
    h('systype = unix_mac_pc()')

    if h.systype == 3:
        if double_escaped:
            tempdata_address = '..\\\\..\\\\tempdata\\\\'
        else:
            tempdata_address = '..\\..\\tempdata\\'
    else:
        tempdata_address = "../tempdata/"

    return tempdata_address
Example #51
0
 def make_cells(self,cell_list):
     '''
     Distribute cells across the hosts in a
     Round robin distribution (circular dealing of cells)
     https://en.wikipedia.org/wiki/Round-robin
     '''
     #import neuron
     #from neuron import h    
     coords = [0 for i in xrange(0,3)]#define list as a local variable.
     h('objref py')
     h('py = new PythonObject()')
     NCELL=self.NCELL
     SIZE=self.SIZE
     RANK=self.RANK
     pc=h.ParallelContext()
     h('objref tvec, gidvec')
     h('gidvec = new Vector()')
     h('tvec = new Vector()')
     assert len(cell_list)!=0
     d = { x: y for x,y in enumerate(cell_list)} 
     itergids = iter( (d[i][3],i) for i in range(RANK, NCELL, SIZE) )       
     #Create a dictionary, where keys are soma centre coordinates to check for two cells occupying the same position.
     #since dictionary keys have to be unique should throw error once two cell somas occupy exactly the same coordinates.         
     #TODO keep rank0 free of cells, such that all the memory associated with that CPU is free for graph theory related objects.
     #This would require an iterator such as the following.
     for (j,i) in itergids:
         has_cells=1#RANK specific attribute simplifies later code.
         cell = h.mkcell(j)
         self.names_list[i]=j
         print cell, j,i 
         cell.geom_nseg()
         cell.gid1=i 
         cell.name=j
         # Populate the dictionary with appropriate keys for the sanity check.           
         #excitatory neuron.
         #self.test_cell(d[i])
         if 'pyramid' in d[i]:                
             cell.pyr()
             cell.polarity=1                        
         #inhibitory neuron.
         else:                              
             cell.basket()
             cell.polarity=0           
         #8 lines of trailing code is drawn from.
         #http://neuron.yale.edu/neuron/static/docs/neuronpython/ballandstick5.html        
         pc.set_gid2node(i,RANK)
         nc = cell.connect2target(None)
         pc.cell(i, nc) # Associate the cell with this host and gid
         #### Record spikes of this cell
         pc.spike_record(i, self.tvec, self.gidvec)        
         assert None!=pc.gid2cell(i)
         self.celldict[i]=cell
         self.cells.append(cell)
Example #52
0
def create_reduced_cell(soma_cable,
                        has_apical,
                        original_cell,
                        model_obj_name,
                        new_cable_properties,
                        new_cables_nsegs,
                        subtrees_xs):
    h("objref reduced_cell")
    h("reduced_cell = new " + model_obj_name + "()")

    create_sections_in_hoc("soma", 1, "reduced_cell")

    soma = original_cell.soma[0] if original_cell.soma.hname()[-1] == ']' else original_cell.soma
    append_to_section_lists("soma[0]", "somatic", "reduced_cell")

    if has_apical:  # creates reduced apical cable if apical subtree existed
        create_sections_in_hoc("apic", 1, "reduced_cell")
        apic = h.reduced_cell.apic[0]
        num_of_basal_subtrees = len(new_cable_properties) - 1

        cable_params = new_cable_properties[0]
        nseg = new_cables_nsegs[0]
        apply_params_to_section("apic[0]", "apical", "reduced_cell",
                                apic, cable_params, nseg)
        apic.connect(soma, subtrees_xs[0], 0)
    else:
        apic = None
        num_of_basal_subtrees = len(new_cable_properties)

    # creates reduced basal cables
    create_sections_in_hoc("dend", num_of_basal_subtrees, "reduced_cell")
    basals = [h.reduced_cell.dend[i] for i in range(num_of_basal_subtrees)]

    for i in range(num_of_basal_subtrees):
        if has_apical:
            index_in_reduced_cables_dimensions = i + 1
        else:
            index_in_reduced_cables_dimensions = i

        cable_params = new_cable_properties[index_in_reduced_cables_dimensions]
        nseg = new_cables_nsegs[index_in_reduced_cables_dimensions]

        apply_params_to_section("dend[" + str(i) + "]", "basal", "reduced_cell",
                                basals[i], cable_params, nseg)

        basals[i].connect(soma, subtrees_xs[index_in_reduced_cables_dimensions], 0)

    # create cell python template
    cell = Neuron(h.reduced_cell)
    cell.soma = original_cell.soma
    cell.apic = apic

    return cell, basals
def get_mn_geom_address(double_escaped = 0):
    h('systype = unix_mac_pc()')

    if h.systype == 3:
        if double_escaped:
            mn_geom_address = '..\\\\mn_geometries\\\\'
        else:
            mn_geom_address = '..\\mn_geometries\\'
    else:
        mn_geom_address = "mn_geometries/"

    return mn_geom_address
def get_tempdata_address(double_escaped = 0):
    h('systype = unix_mac_pc()')

    if h.systype == 3:
        if double_escaped:
            tempdata_address = '..\\\\..\\\\tempdata\\\\'
        else:
            tempdata_address = '..\\..\\tempdata\\'
    else:
        tempdata_address = "../tempdata/"

    return tempdata_address
Example #55
0
def get_mn_geom_address(double_escaped=0):
    h('systype = unix_mac_pc()')

    if h.systype == 3:
        if double_escaped:
            mn_geom_address = '..\\\\mn_geometries\\\\'
        else:
            mn_geom_address = '..\\mn_geometries\\'
    else:
        mn_geom_address = "mn_geometries/"

    return mn_geom_address
Example #56
0
def set_params_all_active(hobj, params_file_name):
    """Configure a neuron after the cell morphology has been loaded"""
    with open(params_file_name) as biophys_params_file:
        biophys_params = json.load(biophys_params_file)

    passive = biophys_params['passive'][0]
    genome = biophys_params['genome']
    conditions = biophys_params['conditions'][0]

    # Set fixed passive properties
    for sec in hobj.all:
        sec.Ra = passive['ra']
        sec.insert('pas')

    # Insert channels and set parameters
    for p in genome:
        section_array = p["section"]
        mechanism = p["mechanism"]
        param_name = p["name"]
        param_value = float(p["value"])
        if section_array == "glob":
            h(p["name"] + " = %g " % p["value"])
        else:
            if hasattr(hobj, section_array):
                if mechanism != "":
                    print 'Adding mechanism %s to %s' % (mechanism,
                                                         section_array)
                    for section in getattr(hobj, section_array):
                        if h.ismembrane(str(mechanism), sec=section) != 1:
                            section.insert(mechanism)

                print 'Setting %s to %.6g in %s' % (param_name, param_value,
                                                    section_array)
                for section in getattr(hobj, section_array):
                    setattr(section, param_name, param_value)

    # Set reversal potentials
    for erev in conditions['erev']:
        erev_section_array = erev["section"]
        ek = float(erev["ek"])
        ena = float(erev["ena"])

        print 'Setting ek to %.6g and ena to %.6g in %s' % (ek, ena,
                                                            erev_section_array)

        if hasattr(hobj, erev_section_array):
            for section in getattr(hobj, erev_section_array):
                if h.ismembrane("k_ion", sec=section) == 1:
                    setattr(section, 'ek', ek)
                if h.ismembrane("na_ion", sec=section) == 1:
                    setattr(section, 'ena', ena)
        else:
            print "Warning: can't set erev for %s, section array doesn't exist" % erev_section_array
def plot_m_types(ax, PSET, colors, section=['dend', 'apic'], spacing=300, linewidths=0.05):
    '''draw comparison plot of each individual morphology'''
    CWD=PSET.CWD
    CELLPATH=PSET.CELLPATH
    n_segs = []
    areas = []

    for i, data in enumerate(PSET.populationParameters):
        
        NRN = data["me_type"]
        os.chdir(os.path.join(CWD, CELLPATH, NRN))
        cell = NetworkCell(**PSET.cellParameters[NRN])
        cell.set_pos(x=i*spacing, y=0, z=data['pop_args']['loc'])
        cell.set_rotation(x=np.pi/2)
        print(NRN, cell.zstart.min(), cell.zmid.min(), cell.zend.min(), cell.zstart.max(), cell.zmid.max(), cell.zend.max())   
        n_segs += [cell.totnsegs]
        areas += [cell.area[cell.get_idx(section)].sum()]

        zips = []
        for x, z in cell.get_idx_polygons(projection=('x', 'z')):
            zips.append(list(zip(x, z)))

        polycol = PolyCollection(zips,
                                 edgecolors=colors[i],
                                 linewidths=linewidths,
                                 facecolors=colors[i],
                                 label=NRN,
                                 )
        ax.add_collection(polycol)
        os.chdir(CWD)
    
    axis = ax.axis(ax.axis('tight'))

    # draw lines showing the layer boundaries
    ax.hlines(np.r_[0., -PSET.layer_data['thickness'].cumsum()][:4], axis[0], axis[1]-300, 'k', lw=0.5)
    ax.hlines(np.r_[0., -PSET.layer_data['thickness'].cumsum()][4:], axis[0], axis[1], 'k', lw=0.5)
    
    # annotate hlines with values
    for z in np.r_[0., -PSET.layer_data['thickness'].cumsum()]:
        ax.text(axis[0], z, r'$z={}$'.format(int(z)) + '$\mu$m', ha='right', va='center')
    
    ax.set_yticks(PSET.layer_data['center'])
    ax.set_yticklabels(PSET.layer_data['layer'])
    
    ax.set_xticks(np.arange(PSET.populationParameters.size)*spacing)
    ax.set_xticklabels(PSET.populationParameters['m_type'], rotation='vertical')

    ax.axis(ax.axis('equal'))
    ax.set_title('m-types')
    neuron.h("forall delete_section()")
    
    return n_segs, areas
Example #58
0
def test_axial_currents():
    h('soma {insert pas}')
    isim = h.IClamp(1, sec=h.cable)
    isim.delay = 0
    isim.dur = 1
    isim.amp = 2 #nA
    h.cable.Ra = 0.1
    cell.initialize(0.1)
    t, imem_density, iax_density = cell.integrate(0.2, i_axial=True)
    coord = cell.get_seg_coords()
    iax = iax_density*coord['diam'][None,:]**2*1e-8/4.*h.PI #mA
    
    assert np.abs(iax[-1,1]*1e6 - isim.amp)<0.1*isim.amp
Example #59
0
def insert(pat, chan):
    """Insert the pattern into segments """
    global nchan
    chanName, expr = chan
    for sec in topology.nodes():
        secName = sec.hname()
        if pat.match(secName):
            expr = expr.replace('r', str(topology.node[sec]['r']))
            g = eval(expr)
            print("|- Inserting {} into {} with conductance: {} uS".format(
                chanName, secName, g)
                )
            chan = sec.insert(chanName)
            h('gmax=%s' % (g))
            nchan += 1
Example #60
0
def main():
    h.load_file("multisplit.hoc")
    h('{nrn_load_dll("../specials/x86_64/.libs/libnrnmech.so")}')

    tstop = 1000
    pc = h.ParallelContext()
    start = h.startsw()

    ######################################################
    # load model
    cell = load_model("./1056.swc")

    ######################################################
    # generate mcomplex.dat
    lb = h.MyLoadBalance()
    lb.ExperimentalMechComplex()
    #save_mcomplex(lb)
    pc.barrier()

    ######################################################
    # set up multi split
    cplx = h.multisplit(lb)
    pc.multisplit()
    pc.set_maxstep(10)

    ######################################################
    # set stim and record of v
    stim = set_iclamp("CellSwc[0].Dend[2000]", pc)
    vec_t = h.Vector()
    vec_t.record(h._ref_t)
    vec_v = set_vec_v("CellSwc[0].Dend[100]", pc)
    setup_time = h.startsw() - start

    ######################################################
    # run simulation
    start = h.startsw()
    h.stdinit()
    pc.psolve(tstop)
    pc.barrier()
    calc_time = h.startsw() - start

    ######################################################
    # disp info
    show_result(pc, setup_time, calc_time, cplx)
    #show_section()
    #if(vec_v != 0):
    #    show_plot(vec_t, vec_v)
    pc.done()