Example #1
0
    def make(self, key):
        """
        Purpose: To extract the axon/dendrite of a split neuron
        
        1) Pull down the neuron
        2) Get the neuron ids and nucleus centers corresponding to
        that segent id

        Iterate through all the neuron objects
        a0) Recompute the width
        a) Get the winning nucleus_id
        b) Get the cell type info from the central database
        c) Add synapses to neuron obj
        d) Add spine categories to neuorn object
        e) classifiy E/I cell type according to Baylor rules
        f) Pick the cell type to use
        g) Perfrom complete aon processing
        h) Get aon Features
        i) Save neurong object
        j) Save Axon/Dendrite before proofreading
        k) Write to dj table

        """
        global_time = time.time()

        segment_id = key["segment_id"]
        decomposition_cell_type_hash = key["decomposition_cell_type_method"]
        decomposition_split_method = hdju.decomposition_split_method_hash_from_segment_id(
            segment_id, verbose=True)

        if verbose:
            print(
                f"\n\n--Working on {segment_id}: (decomposition_cell_type_hash = "
                f"{decomposition_cell_type_hash}, decomposition_split_method = {decomposition_split_method})"
            )

        #0) Visualizing the neuron
        if plotting:
            print(f"Visualizing the intial neuron")
            hdju.plot_mesh_with_somas(
                segment_id=segment_id,
                #split_index=0,
                with_skeleton=True,
                align_from_soma_center=True)

        # ---1) Pulling down the neuron---
        st = time.time()

        n_objs, sp_indexes = hdju.neuron_objs_from_decomposition_stage(
            segment_id, verbose=True, return_one=False)

        if verbose:
            print(f"---1) Pulling down the neuron---: {time.time() - st}")
            st = time.time()

        # ---2) Get the nucleus ids and nucleus centers for that segment id---
        nucleus_ids, nucleus_centers = hdju.nuclei_from_segment_id(
            segment_id, return_centers=True, return_nm=True)

        if verbose:
            print(f"Number of Corresponding Nuclei = {len(nucleus_ids)}")
            print(f"nucleus_ids = {nucleus_ids}")
            print(f"nucleus_centers = {nucleus_centers}")

        curr_idx = 0
        neuron_obj_pre_filt = n_objs[curr_idx]
        split_index = sp_indexes[curr_idx]

        if plot_initial_neuron:
            neuron_obj_rot = hu.align_neuron_obj(neuron_obj_pre_filt)
            nviz.visualize_neuron(neuron_obj_rot, limb_branch_dict="all")

        if verbose:
            print(f"--> Working on Split Index {split_index} -----")

        if verbose:
            print(
                f"---2) Get the nucleus ids and nucleus centers--- {time.time() - st}"
            )
            st = time.time()

        # -- a0) Prep work: Recompute the Widths --
        if filter_low_branch_cluster_dendrite:
            neuron_obj, filtering_info_low_branch = pru.apply_proofreading_filters_to_neuron(
                input_neuron=neuron_obj_pre_filt,
                filter_list=[pru.low_branch_length_clusters_dendrite_filter],
                plot_limb_branch_filter_with_disconnect_effect=False,
                plot_limb_branch_filter_away=
                plot_limb_branch_filter_away_low_branch,
                plot_final_neuron=False,
                return_error_info=True,
                verbose=False,
                verbose_outline=verbose)
        else:
            neuron_obj = neuron_obj_pre_filt
            filtering_info_low_branch = {}

        neuron_obj = wu.neuron_width_calculation_standard(neuron_obj,
                                                          verbose=True)

        if verbose:
            print(f"a0) Prep work: Recompute the Widths: {time.time() - st}")
            st = time.time()

        # --- a) Get the winning nucleus_id and nucleus info
        winning_nucleus_id, nucleus_info = nru.pair_neuron_obj_to_nuclei(
            neuron_obj,
            "S0",
            nucleus_ids,
            nucleus_centers,
            nuclei_distance_threshold=15000,
            return_matching_info=True,
            verbose=True)
        if verbose:
            print(f"nucleus_info = {nucleus_info}")
            print(f"winning_nucleus_id = {winning_nucleus_id}")

        if winning_nucleus_id is None:
            if verbose:
                print(
                    f"No winning nuclues found so assigning the only nucleus id"
                )
            winning_nucleus_id = nucleus_ids[0]

        if verbose:
            print(
                f"--- a) Get the winning nucleus_id and nucleus info: {time.time() - st}"
            )
            st = time.time()

        # ---b) Get the cell type info from database
        database_cell_type_info = hdju.nuclei_classification_info_from_nucleus_id(
            winning_nucleus_id)
        database_e_i_class = database_cell_type_info[
            f"{data_type}_e_i_cell_type"]

        if verbose:
            print(f"database_cell_type_info = {database_cell_type_info}")
            print(f"database_e_i_class = {database_e_i_class}")

        if verbose:
            print(
                f"---b) Get the cell type info from database: {time.time() - st}"
            )
            st = time.time()

        # ---c/d) Add synapses and spine categories
        import synapse_utils as syu
        neuron_obj = syu.add_synapses_to_neuron_obj(
            neuron_obj,
            validation=False,
            verbose=verbose,
            original_mesh=None,
            plot_valid_error_synapses=False,
            calculate_synapse_soma_distance=False,
            add_valid_synapses=True,
            add_error_synapses=False,
        )
        neuron_obj = spu.add_head_neck_shaft_spine_objs(neuron_obj,
                                                        verbose=verbose)
        if plot_synapses:
            syu.plot_synapses(neuron_obj)

        if plot_spines:
            spu.plot_spines_head_neck(neuron_obj)

        if verbose:
            print(
                f"---c/d) Add synapses and spine categories: {time.time() - st}"
            )
            st = time.time()

        #---e) classifiy E/I cell type according to Baylor rules
        baylor_e_i, baylor_cell_type_info = ctu.e_i_classification_from_neuron_obj(
            neuron_obj,
            plot_on_model_map=False,
            plot_spines_and_sk_filter_for_syn=plot_spines_and_sk_filter_for_syn,
            plot_spines_and_sk_filter_for_spine=
            plot_spines_and_sk_filter_for_spine,
            verbose=True,
            return_cell_type_info=True)

        baylor_cell_type_info["baylor_e_i"] = baylor_e_i

        if verbose:
            print(f"baylor_cell_type_info = \n{baylor_cell_type_info}")

        if verbose:
            print(
                f"---e) classifiy E/I cell type according to Baylor rules: {time.time() - st}"
            )
            st = time.time()

        #--- f) Pick the cell type to use

        if (inh_exc_class_to_use_for_axon == "h01"
                and database_e_i_class in ["excitatory", "inhibitory"]):
            e_i_class = database_e_i_class
            if verbose:
                print(f"Using h01 e/i cell type")

            cell_type_used = "h01"
        else:
            if verbose:
                print(f"Using baylor e/i cell type")
            e_i_class = baylor_e_i
            cell_type_used = "baylor"

        if verbose:
            print(
                f"e_i_class = {e_i_class} with cell_type_used = {cell_type_used}"
            )

        if verbose:
            print(f"---f) Pick the cell type to use: {time.time() - st}")
            st = time.time()

        #---# g) Perfrom complete aon processing

        if plot_aligned_neuron:
            print(f"plot_aligned_neuron")
            neuron_obj_rot = hu.align_neuron_obj(neuron_obj)
            nviz.visualize_neuron(neuron_obj_rot, limb_branch_dict="all")

        o_neuron_unalign, filtering_info, axon_angles_dict = au.complete_axon_processing(
            neuron_obj,
            cell_type=e_i_class,
            add_synapses_and_head_neck_shaft_spines=False,
            validation=False,
            plot_initial_axon=plot_initial_axon,
            plot_axon_on_dendrite=plot_axon_on_dendrite,
            return_filtering_info=True,
            return_axon_angle_info=True,
            plot_high_fidelity_axon=plot_high_fidelity_axon,
            plot_boutons_web=plot_boutons_web,
            add_synapses_after_high_fidelity_axon=True,
            verbose=verbose)

        #o_neuron_unalign = hu.unalign_neuron_obj(o_neuron)

        #         if verbose:
        #             print(f"Readding Synapses to the high fidelity axon after all processing donw")
        #         o_neuron_unalign = syu.add_synapses_to_neuron_obj(o_neuron_unalign,
        #                 validation = False,
        #                 verbose  = verbose,
        #                 original_mesh = None,
        #                 plot_valid_error_synapses = False,
        #                 calculate_synapse_soma_distance = False,
        #                 add_valid_synapses = True,
        #                   add_error_synapses=False,
        #                 limb_branch_dict_to_add_synapses=o_neuron_unalign.axon_limb_branch_dict)

        if verbose:
            print(
                f"After add_synapses_after_high_fidelity_axon: # of neuron_obj.synapses_somas = {len(o_neuron_unalign.synapses_somas)}"
            )

        if plot_unaligned_synapses:
            syu.plot_synapses(o_neuron_unalign, total_synapses=True)

        if plot_unaligned_axon:
            nviz.plot_axon(o_neuron_unalign)

        if verbose:
            print(f"---g) Perfrom complete aon processing: {time.time() - st}")
            st = time.time()

        # --- h) Get the axon and dendrite stats ----
        dendrite_stats = nst.skeleton_stats_dendrite(o_neuron_unalign,
                                                     include_centroids=False)
        axon_stats = nst.skeleton_stats_axon(o_neuron_unalign,
                                             include_centroids=False)
        stats_dict = o_neuron_unalign.neuron_stats(
            stats_to_ignore=[
                "n_not_processed_soma_containing_meshes", "n_error_limbs",
                "n_same_soma_multi_touching_limbs",
                "n_multi_soma_touching_limbs", "n_somas", "spine_density"
            ],
            include_skeletal_stats=False,
            include_centroids=True,
            voxel_adjustment_vector=voxel_adjustment_vector,
        )

        if verbose:
            print(
                f"--- h) Get the axon and dendrite stats: {time.time() - st}")
            st = time.time()

        #---- i) Calculating the synapse info ------
        syn_dict = syu.n_synapses_analysis_axon_dendrite(o_neuron_unalign,
                                                         verbose=True)

        # --- j) saving neuron and skeleton ----

        #4) Save the neuron object in a certain location
        file_name = f"{o_neuron_unalign.segment_id}_{split_index}_{decomposition_cell_type_hash}"
        file_name_decomp = f"{file_name}_{dataset}_cell_type_decomp"
        output_folder = str(target_dir_decomp)

        ret_file_path = o_neuron_unalign.save_compressed_neuron(
            output_folder=output_folder,
            file_name=file_name_decomp,
            return_file_path=True,
            export_mesh=False,
            suppress_output=True,
        )

        ret_file_path_str = str(ret_file_path.absolute()) + ".pbz2"

        axon_skeleton = o_neuron_unalign.axon_skeleton
        file_name_decomp_sk_axon = f"{file_name_decomp}_axon_sk"
        ret_sk_filepath_ax = su.compressed_pickle(
            axon_skeleton,
            filename=file_name_decomp_sk_axon,
            folder=str(target_dir_sk),
            return_filepath=True)

        dendrite_skeleton = o_neuron_unalign.dendrite_skeleton
        file_name_decomp_sk_dendr = f"{file_name_decomp}_dendr_sk"
        ret_sk_filepath_dendr = su.compressed_pickle(
            dendrite_skeleton,
            filename=file_name_decomp_sk_dendr,
            folder=str(target_dir_sk),
            return_filepath=True)

        if verbose:
            print(f"neuron ret_file_path_str = {ret_file_path_str}")
            print(f"ret_sk_filepath_ax = {ret_sk_filepath_ax}")
            print(f"ret_sk_filepath_dendr = {ret_sk_filepath_dendr}")

        if verbose:
            print(f"--- i) saving neuron and skeleton ----")
            st = time.time()

        nucleus_info
        h01_e_i_cell_type = database_e_i_class

        database_cell_type_info

        baylor_e_i, baylor_cell_type_info
        e_i_class
        cell_type_used

        filtering_info, axon_angles_dict
        o_neuron_unalign

        dendrite_stats
        axon_stats
        stats_dict

        ret_file_path_str
        ret_sk_filepath_ax
        ret_sk_filepath_dendr

        # 7) make the insertions
        run_time = run_time = np.round(time.time() - global_time, 4)
        # -- decomp table --
        n_dict = dict(
            key.copy(),
            decomposition_split_method=decomposition_split_method,
            multiplicity=1,
            split_index=split_index,
            decomposition=str(ret_file_path_str),
            axon_skeleton=str(ret_sk_filepath_ax),
            dendrite_skeleton=str(ret_sk_filepath_dendr),

            #--- cell types
            h01_e_i_cell_type=database_e_i_class,
            cell_type=e_i_class,
            cell_type_used=cell_type_used,

            #----- synapses ---
            n_syn_pre=neuron_obj.n_synapses_pre,
            n_syn_post=neuron_obj.n_synapses_post,
            run_time=run_time,

            # statistics for the split
        )

        dicts_for_update = [
            nucleus_info, database_cell_type_info, filtering_info,
            axon_angles_dict, dendrite_stats, axon_stats, stats_dict,
            baylor_cell_type_info, filtering_info_low_branch, syn_dict
        ]

        for d in dicts_for_update:
            n_dict.update(d)

        print(f"n_dict = {n_dict}")

        for curr_obj in [self, SkeletonAxonDendrite]:

            curr_obj.insert1(n_dict,
                             allow_direct_insert=True,
                             ignore_extra_fields=True,
                             skip_duplicates=True)
            curr_obj.Object.insert1(n_dict,
                                    allow_direct_insert=True,
                                    ignore_extra_fields=True,
                                    skip_duplicates=True)
Example #2
0
    def make(self,key):
        """
        Pseudocode:
        1) Pull Down All of the Neurons
        2) Get the nucleus centers and the original mesh

        """
                
        whole_pass_time = time.time()
        
        # 1) Pull Down All of the Neurons
        segment_id = key["segment_id"]
        split_index = key["split_index"]
        
        if verbose:
            print(f"\n\n------- Working on Neuron {segment_id}_{split_index} -----")

        cell_type,nucleus_id = (minnie.DecompositionCellTypeV7() & key).fetch1(f"{cell_type_used}_e_i","nucleus_id")

        if verbose:
            print(f"---- Working on Neuron {segment_id}:{split_index}")
            print(f"nucleus_id = {nucleus_id},cell_type = {cell_type}")


        neuron_obj = du.decomposition_with_spine_recalculation(segment_id,split_index = split_index)
        
        import axon_utils as au
        au.compute_axon_on_dendrite_limb_branch_dict(neuron_obj = neuron_obj,
                                                plot_axon_on_dendrite=False,
                                                     verbose = True,
                                                    clean_prior_labels = True)
        
        neuron_obj = syu.add_synapses_to_neuron_obj(neuron_obj,
                                        validation = False,
                                        verbose  = verbose,
                                        original_mesh = None,
                                        plot_valid_error_synapses = False,
                                        calculate_synapse_soma_distance = False,
                                        add_valid_synapses = True,
                                          add_error_synapses=False,)
            
        if plot_data:
            nviz.plot_axon(neuron_obj)
        
        #2) Running the neuron proofreading
#         neuron_obj_proof,filtering_info = pru.proofread_neuron_full(
#             neuron_obj,
            
#             filter_list = [pru.exc_axon_on_dendrite_merges_filter()],
            
#             # arguments for processing down in DecompositionCellTypeV7
#             cell_type=cell_type,
#             add_valid_synapses = False,
#             validation = validation,

#             add_spines = False,

#             perform_axon_processing = False,

#             return_after_axon_processing = False,

#             #arguments for processing after DecompositionCellTypeV7 to Proofread Neuron
#             plot_head_neck_shaft_synapses = plot_data,

#             plot_soma_synapses = plot_data,

#             proofread_verbose = proofread_verbose,
#             verbose_outline = verbose,
#             plot_limb_branch_filter_with_disconnect_effect = plot_data,
#             plot_final_filtered_neuron = False,
#             plot_synapses_after_proofread = False,

#             plot_compartments = plot_data,

#             plot_valid_synapses = plot_data,
#             plot_error_synapses = plot_data,

#             verbose = verbose,
#             debug_time = verbose,
#             )

        
        o_neuron,filtering_info = pru.proofread_neuron_class_predetermined(
            neuron_obj=neuron_obj,
            inh_exc_class = cell_type,
            plot_limb_branch_filter_with_disconnect_effect = plot_data,
            verbose = verbose,
            verbose_outline = verbose,
            high_fidelity_axon_on_excitatory = False,
            plot_final_filtered_neuron = plot_data,
            filter_list=[pru.exc_axon_on_dendrite_merges_filter()],
                                                                      )
        
        
        #4) Collect and Write Neuron Stats
        limb_branch_to_cancel = pru.extract_from_filter_info(filtering_info,
                            name_to_extract="limb_branch_dict_to_cancel")
                            
            
        red_blue_suggestions = pru.extract_from_filter_info(filtering_info,
                                    name_to_extract = "red_blue_suggestions")

        filter_key = {k:np.round(v,2) for k,v in filtering_info.items() if "area" in k or "length" in k}
        
        neuron_stats_dict = dict(key,
                                proof_version = proof_version,
                                limb_branch_to_cancel=limb_branch_to_cancel,
                                red_blue_suggestions=red_blue_suggestions,
                                cell_type=cell_type,
                                 nucleus_id=nucleus_id)

        neuron_stats_dict.update(filter_key)
        
        
        AutoProofreadAxonOnDendrite.insert1(neuron_stats_dict,
                                     skip_duplicates = True,
                                     ignore_extra_fields = True,)
        
        
        print(f"\n\n ***------ Total time for {key['segment_id']} = {time.time() - whole_pass_time} ------ ***")
Example #3
0
    def make(self, key):
        """
        Pseudocode:
        1) Pull Down All of the Neurons
        2) Get the nucleus centers and the original mesh

        """

        whole_pass_time = time.time()

        # 1) Pull Down All of the Neurons
        segment_id = key["segment_id"]
        split_index = key["split_index"]

        if verbose:
            print(
                f"\n\n------- Working on Neuron {segment_id}_{split_index} -----"
            )

        cell_type, nucleus_id = (minnie.DecompositionCellTypeV7()
                                 & key).fetch1(f"{cell_type_used}_e_i",
                                               "nucleus_id")

        if verbose:
            print(f"---- Working on Neuron {segment_id}:{split_index}")
            print(f"nucleus_id = {nucleus_id},cell_type = {cell_type}")

        neuron_obj = du.decomposition_with_spine_recalculation(
            segment_id, split_index=split_index)

        if plot_data:
            nviz.plot_axon(neuron_obj)

        #2) Running the neuron proofreading
        neuron_obj_proof, filtering_info = pru.proofread_neuron_full(
            neuron_obj,

            # arguments for processing down in DecompositionCellTypeV7
            cell_type=cell_type,
            add_valid_synapses=False,
            validation=validation,
            add_spines=False,
            perform_axon_processing=False,
            return_after_axon_processing=False,

            #arguments for processing after DecompositionCellTypeV7 to Proofread Neuron
            plot_head_neck_shaft_synapses=plot_data,
            plot_soma_synapses=plot_data,
            proofread_verbose=proofread_verbose,
            verbose_outline=verbose,
            plot_limb_branch_filter_with_disconnect_effect=plot_data,
            plot_final_filtered_neuron=False,
            plot_synapses_after_proofread=False,
            plot_compartments=plot_data,
            plot_valid_synapses=plot_data,
            plot_error_synapses=plot_data,
            verbose=verbose,
            debug_time=verbose,
        )

        #3) Collect and Write Data to Synapse Table
        dj_keys_valid = syu.synapses_to_dj_keys(neuron_obj_proof,
                                                valid_synapses=True,
                                                verbose=verbose,
                                                nucleus_id=nucleus_id,
                                                split_index=split_index)

        dj_keys_error = syu.synapses_to_dj_keys(neuron_obj_proof,
                                                valid_synapses=False,
                                                verbose=verbose,
                                                nucleus_id=nucleus_id,
                                                split_index=split_index)

        if verbose:
            print(f"n_synapses_total = {neuron_obj_proof.n_synapses_total}")

        AutoProofreadSynapse7.insert(dj_keys_valid, skip_duplicates=True)
        AutoProofreadSynapseErrors7.insert(dj_keys_error, skip_duplicates=True)

        #4) Collect and Write Neuron Stats
        limb_branch_to_cancel = pru.extract_from_filter_info(
            filtering_info, name_to_extract="limb_branch_dict_to_cancel")

        red_blue_suggestions = pru.extract_from_filter_info(
            filtering_info, name_to_extract="red_blue_suggestions")

        filter_key = {
            k: np.round(v, 2)
            for k, v in filtering_info.items() if "area" in k or "length" in k
        }
        mesh_skeleton_file_paths = pru.save_off_meshes_skeletons(
            neuron_obj_proof,
            verbose=False,
            split_index=key["split_index"],
            file_name_ending=f"proofv{proof_version}")

        neuron_stats_dict = dict(
            key,
            proof_version=proof_version,
            limb_branch_to_cancel=limb_branch_to_cancel,
            red_blue_suggestions=red_blue_suggestions,
        )

        neuron_stats_dict.update(mesh_skeleton_file_paths)
        neuron_stats_dict.update(filter_key)

        #--------- 12/8: Adding the neuron_graph object that will be retrieved later ----
        if save_G_with_attrs:
            G = ctcu.G_with_attrs_from_neuron_obj(neuron_obj_proof,
                                                  plot_G=False)
            G_path = ctcu.save_G_with_attrs(G,
                                            segment_id=segment_id,
                                            split_index=split_index)
            if verbose:
                print(f"Saved G_path = {G_path}")
            neuron_stats_dict["neuron_graph"] = G_path

        AutoProofreadStats7.insert1(neuron_stats_dict, skip_duplicates=True)

        # 5) Collecting Stats for the AutoProofreadNeurons6 table

        #a) Neuron basics
        if verbose:
            print(f"\n--5a) Neuron basics")
        dicts_to_update = []

        multiplicity = du.multiplicity_from_segment_id(segment_id)
        soma_x, soma_y, soma_z = nru.soma_centers(neuron_obj,
                                                  soma_name="S0",
                                                  voxel_adjustment=True)

        basic_cell_dict = dict(multiplicity=multiplicity,
                               soma_x=soma_x,
                               soma_y=soma_y,
                               soma_z=soma_z,
                               cell_type=cell_type,
                               cell_type_used=cell_type_used)
        dicts_to_update.append(basic_cell_dict)

        #b) Neuron Overall Statistics
        if verbose:
            print(f"\n--5b) Neuron Overall Statistics")
        neuron_stats_dict = neuron_obj_proof.neuron_stats(
            stats_to_ignore=["axon_length", "axon_area"])
        dicts_to_update.append(neuron_stats_dict)

        #c) compartment Stats
        if verbose:
            print(f"\n--5c) compartment Stats")
        comp_stats = apu.compartments_stats(neuron_obj_proof,
                                            compartment_labels=None,
                                            verbose=False)
        dicts_to_update.append(comp_stats)

        #d) Synapse Stats
        if verbose:
            print(f"\n--5d) Synapse Stats")
        syn_stats = syu.complete_n_synapses_analysis(neuron_obj_proof)
        dicts_to_update.append(syn_stats)

        #e) Cell Typing Info after proofreading
        if verbose:
            print(f"\n--5e) Cell Typing Info after proofreading")
        baylor_e_i, baylor_cell_type_info = ctu.e_i_classification_from_neuron_obj(
            neuron_obj_proof, verbose=False, return_cell_type_info=True)

        baylor_cell_type_info["baylor_e_i"] = baylor_e_i
        baylor_cell_type_info = {
            f"{k}_after_proof": v
            for k, v in baylor_cell_type_info.items()
        }
        dicts_to_update.append(baylor_cell_type_info)

        #c

        if verbose:
            print(f"\n--5e) Cell Typing Info after proofreading")
        axon_feature_dict = au.axon_features_from_neuron_obj(
            neuron_obj_proof, features_to_exclude=("length", "n_branches"))

        apical_feature_dict = apu.compartment_features_from_skeleton_and_soma_center(
            neuron_obj_proof,
            compartment_label="apical_total",
            name_prefix="apical",
            features_to_exclude=("length", "n_branches"),
        )

        basal_feature_dict = apu.compartment_features_from_skeleton_and_soma_center(
            neuron_obj_proof,
            compartment_label="basal",
            name_prefix="basal",
            features_to_exclude=("length", "n_branches"),
        )

        dendrite_feature_dict = apu.compartment_features_from_skeleton_and_soma_center(
            neuron_obj_proof,
            compartment_label="dendrite",
            name_prefix="dendrite",
            features_to_exclude=("length", "n_branches"),
        )

        dicts_to_update += [
            axon_feature_dict, apical_feature_dict, basal_feature_dict,
            dendrite_feature_dict
        ]

        #g) Repeating old features from DecompositionCellType table

        if verbose:
            print(
                f"\n--5g) Repeating old features from DecompositionCellTypeV7 table"
            )

        decomp_cell_type_features = [
            "nucleus_id",
            "nuclei_distance",
            "n_nuclei_in_radius",
            "n_nuclei_in_bbox",
            "soma_x_nm",
            "soma_y_nm",
            "soma_z_nm",
            "baylor_e_i",
            "allen_e_i",
            "cell_type_used",
            "cell_type",
            "axon_angle_max",
            "axon_angle_min",
            "n_axon_angles",
            "allen_e_i_n_nuc",
            "allen_cell_type",
            "allen_cell_type_n_nuc",
            "allen_cell_type_e_i",
        ]

        decomp_dict = (minnie.DecompositionCellTypeV7() & key).fetch(
            *decomp_cell_type_features, as_dict=True)[0]
        decomp_dict["cell_type_used_for_axon"] = decomp_dict["cell_type_used"]
        decomp_dict["cell_type_for_axon"] = decomp_dict["cell_type"]
        del decomp_dict["cell_type_used"]
        del decomp_dict["cell_type"]

        dicts_to_update.append(decomp_dict)

        if plot_data:
            nviz.plot_compartments(neuron_obj_proof)

        #h) Writing the Data

        if verbose:
            print(f"\n--5h) Writing the Data")

        neuron_proof_dict = dict(key,
                                 proof_version=proof_version,
                                 run_time=np.round(
                                     time.time() - whole_pass_time, 2))

        for d_u in dicts_to_update:
            neuron_proof_dict.update(d_u)

        AutoProofreadNeurons7.insert1(neuron_proof_dict, skip_duplicates=True)

        print(
            f"\n\n ***------ Total time for {key['segment_id']} = {time.time() - whole_pass_time} ------ ***"
        )