Example #1
0
        def map(attr, predicate):
            cell = getattr(self, attr)()
            value = cell.value
            if value:
                for iri, label in list(self.sheet.convert_cell(value, predicate=predicate)):
                    if ',' not in value and label != value:
                        log.warning(f'label mismatch {label!r} != {value!r}')

                    if iri is None:
                        if label == 'bed nucleus of stria terminalis juxtacapsular nucleus':
                            iri = OntTerm('UBERON:0011173', label='anterior division of bed nuclei of stria terminalis')
                        else:
                            log.debug(f'nothing found for {label}')
                            continue

                    if isinstance(iri, tuple):
                        op, *rest = iri  # TODO need combinators in future version for union/intersection of object
                        out = (op, *(NegPhenotype(r, predicate)
                                     if isinstance(r, LacksObject) else
                                     Phenotype(r, predicate)
                                     for r in rest if r is not None))
                        yield out
                        continue
                    elif isinstance(iri, LacksObject):
                        p = NegPhenotype(iri.asURIRef(), predicate)
                    else:
                        p = Phenotype(iri, predicate)

                    yield p.asIndicator()
Example #2
0
 def grow(r):
     log.debug(r)
     # TODO implement on the object to allow joining on an index?
     # man this would be easier with sql >_< probably pandas too
     # but so many dependencies ... also diffing issues etc
     if r.label is not None:
         return valuesC.searchIndex('label', r.label)
Example #3
0
    def replace(r, *cols):
        """ replace and reorder """
        # FIXME _super_ inefficient
        vrow = grow(r)
        log.debug('\n'.join(r._fields))
        log.debug('\n'.join(str(_) for _ in r))
        for field, value in sorted(zip(r._fields, r), key=key):
            if field in cols:
                value = getattr(vrow, field)

            yield '' if value is None else value  # completely overwrite the sheet
Example #4
0
    def mapCell(cls, cell, syns=False):
        search_prefixes = (
            'UBERON',
            'CHEBI',
            'PR',
            'NCBITaxon',
            'NCBIGene',
            'ilxtr',
            'NIFEXT',
            'SAO',
            'NLXMOL',
            'BIRNLEX',
        )

        if ':' in cell and ' ' not in cell:
            log.debug(cell)
            if 'http' in cell:
                if cell.startswith('http'):
                    t = OntTerm(iri=cell)
                else:
                    return None, None  # garbage with http inline
            else:
                t = OntTerm(cell, exclude_prefix=(
                    'FMA', ))  # FIXME need better error message in ontquery

            return t.u, t.label

        result = [
            r for r in cls.sgv.findByTerm(
                cell, searchSynonyms=syns, prefix=search_prefixes)
            if not r['deprecated']
        ]
        #printD(cell, result)
        if not result:
            log.debug(f'{cell}')
            maybe = list(cls.query(label=cell, exclude_prefix=('FMA', )))
            if maybe:
                t = maybe[0]
                return t.u, t.label
            elif not syns:
                return cls.mapCell(cell, syns=True)
            else:
                return None, None
        elif len(result) > 1:
            #printD('WARNING', result)
            result = select_by_curie_rank(result)
        else:
            result = result[0]

        return rdflib.URIRef(result['iri']), result['labels'][0]
Example #5
0
    def mapCell(cls, cell, syns=False, predicate=None):
        search_prefixes = ('UBERON', 'CHEBI', 'PR', 'NCBIGene', 'NCBITaxon',
                           'ilxtr', 'NIFEXT', 'SAO', 'NLXMOL', 'BIRNLEX',)

        if predicate and predicate in Phenotype._molecular_predicates:
            # uberon syns pollute molecular results so move it to one before birnlex
            ub, *rest, b = search_prefixes
            search_prefixes = (*rest, ub, b)

        if cell == 'contralateral':
            return ilxtr.Contralateral, cell  # XXX FIXME only BSPO has this right now
        elif cell.lower() == 'gaba receptor role':
            return ilxtr.GABAReceptor, cell

        if ':' in cell and ' ' not in cell:
            log.debug(cell)
            if 'http' in cell:
                if cell.startswith('http'):
                    t = OntTerm(iri=cell)
                else:
                    return None, None  # garbage with http inline
            else:
                t = OntTerm(cell, exclude_prefix=('FMA',))  # FIXME need better error message in ontquery

            return t.u, t.label

        if cell in ('Vertebrata', ):  # search syns
            syns = True

        def rank_mask(r):
            """
            create a boolean array testing if the current entry
            starts with the prefixes in order and what you will
            get out is arrays where the nth element is true if
            the nth prefix is matched which will then be sorted by n
            1 0 0 0 0 0 0 1 \\
            1 0 0 0 0 0 0 0 \\
            0 1 0 0 0 0 0 0 \\
            0 0 1 0 0 0 0 0 \\
            0 0 0 1 0 0 0 0 \\
            0 0 0 0 1 0 0 0 \\
            """
            # why did it take so long to think of this?
            return (
                *(r['curie'].startswith(p) for p in search_prefixes),
                'labels' in r and cell in r['labels'],
            )

        result = sorted([r for r in cls.sgv.findByTerm(cell, searchSynonyms=syns, prefix=search_prefixes)
                         if not r['deprecated']], key=rank_mask, reverse=True)
        #printD(cell, result)
        if not result:
            log.debug(f'{cell}')
            maybe = list(cls.query(label=cell, exclude_prefix=('FMA',)))
            if maybe:
                t = maybe[0]
                return t.u, t.label
            elif not syns:
                return cls.mapCell(cell, syns=True, predicate=predicate)
            else:
                return None, None
        elif len(result) > 1:
            #printD('WARNING', result)
            result = result[0] #select_by_curie_rank(result)
        else:
            result = result[0]

        return rdflib.URIRef(result['iri']), result['labels'][0]
Example #6
0
        def loop_internal(j, header, cell):
            nonlocal id
            nonlocal current_neuron
            nonlocal do_release
            notes = list(process_note(get_note(i + 1, j, self.cells_index)))  # + 1 since headers is removed
            if notes and not header.startswith('has'):
                _predicate = self.convert_other(header)
                if cell:
                    _object = rdflib.Literal(cell)  # FIXME curies etc.
                else:
                    _object = rdf.nil
                other_notes[_predicate, _object] = notes

            if header == 'curie':
                id = OntId(cell).u if cell else None
                return
            elif header == 'label':
                if id == OntId('NIFEXT:66').u:
                    breakpoint()
                label_neuron = cell
                if cell in self.existing:
                    current_neuron = self.existing[cell]
                elif cell:
                    # TODO
                    self.new.append(cell)
                else:
                    raise ValueError(cell)  # wat
                return
            elif header == 'Status':
                # TODO
                if cell == 'Yes':
                    do_release = True
                elif cell == 'Maybe':
                    pass
                elif cell == 'Not yet':
                    pass
                elif cell == 'Delete':
                    pass
                else:
                    pass

                return
            elif header == 'PMID':
                # TODO
                return
            elif header == 'Other reference':
                # TODO
                return
            elif header == 'Other label':
                # TODO
                return
            elif header == 'definition':
                return  # FIXME single space differences between the spreadsheet and the source

                if cell:
                    definition_neuron = rdflib.Literal(cell)

            elif header == 'synonyms':
                if cell:
                    synonyms_neuron = [rdflib.Literal(s.strip())
                                    # FIXME bare comma is extremely dangerous
                                    for s in cell.split(',')]

                return
            elif header in self.skip:
                return

            objects = []
            if cell:
                predicate = self.convert_header(header)
                if predicate is None:
                    log.debug(f'{(header, cell, notes)}')

                for object, label in self.convert_cell(cell):
                    if predicate in NeuronCUT._molecular_predicates:
                        if isinstance(object, tuple):
                            op, *rest = object
                            rest = [OntTerm(o).asIndicator().URIRef for o in rest]
                            object = op, *rest
                        elif object:
                            log.debug(f'{object!r}')
                            object = OntTerm(object).asIndicator().URIRef

                    if isinstance(label, tuple):  # LogicalPhenotype case
                        _err = []
                        for l in label:
                            if self.lower_check(l, cell):
                                _err.append((cell, label))
                        if _err:
                            self.errors.extend(_err)
                        else:
                            objects.append(object)
                    elif self.lower_check(label, cell):
                        self.errors.append((cell, label))
                    elif str(id) == object:
                        self.errors.append((header, cell, object, label))
                        object = None
                    else:
                        objects.append(object)

                if notes:
                    # FIXME this is a hack to only attach to the last value
                    # since we can't distinguish at the moment
                    wat[predicate, object] = notes
                    if object is not None:
                        # object aka iri can be none if we don't find anything
                        object_notes[object] = notes
                    else:
                        predicate_notes[predicate] = notes
                        # FIXME it might also be simpler in some cases
                        # to have this be object_notes[object] = notes
                        # because we are much less likely to have the same
                        # phenotype appear attached to the different dimensions

                        # FIXME comma sep is weak here because the
                        # reference is technically ambiguous
                        # might be an argument for the denormalized form ...
                        # or perhaps having another sheet for cases like that

            else:
                return

            if predicate and objects:
                for object in objects:  # FIXME has layer location phenotype
                    if isinstance(object, tuple):
                        op, *rest = object
                        pes = (Phenotype(r, predicate) for r in rest)  # FIXME nonhomogenous phenotypes
                        phenotypes.append(LogicalPhenotype(op, *pes))
                    elif object:
                        phenotypes.append(Phenotype(object, predicate))
                    else:
                        self.errors.append((object, predicate, cell))
            elif objects:
                self.errors.append((header, objects))
            else:
                self.errors.append((header, cell))
Example #7
0
    def convert_row(self, i, neuron_row, headers, expect_pes):
        id = None
        label_neuron  = None
        definition_neuron = None
        synonyms_neuron = None
        current_neuron = None
        phenotypes = []
        do_release = False
        predicate_notes = {}
        object_notes = {}
        other_notes = {}
        wat = {}
        def loop_internal(j, header, cell):
            nonlocal id
            nonlocal current_neuron
            nonlocal do_release
            notes = list(process_note(get_note(i + 1, j, self.cells_index)))  # + 1 since headers is removed
            if notes and not header.startswith('has'):
                _predicate = self.convert_other(header)
                if cell:
                    _object = rdflib.Literal(cell)  # FIXME curies etc.
                else:
                    _object = rdf.nil
                other_notes[_predicate, _object] = notes

            if header == 'curie':
                id = OntId(cell).u if cell else None
                return
            elif header == 'label':
                if id == OntId('NIFEXT:66').u:
                    breakpoint()
                label_neuron = cell
                if cell in self.existing:
                    current_neuron = self.existing[cell]
                elif cell:
                    # TODO
                    self.new.append(cell)
                else:
                    raise ValueError(cell)  # wat
                return
            elif header == 'Status':
                # TODO
                if cell == 'Yes':
                    do_release = True
                elif cell == 'Maybe':
                    pass
                elif cell == 'Not yet':
                    pass
                elif cell == 'Delete':
                    pass
                else:
                    pass

                return
            elif header == 'PMID':
                # TODO
                return
            elif header == 'Other reference':
                # TODO
                return
            elif header == 'Other label':
                # TODO
                return
            elif header == 'definition':
                return  # FIXME single space differences between the spreadsheet and the source

                if cell:
                    definition_neuron = rdflib.Literal(cell)

            elif header == 'synonyms':
                if cell:
                    synonyms_neuron = [rdflib.Literal(s.strip())
                                    # FIXME bare comma is extremely dangerous
                                    for s in cell.split(',')]

                return
            elif header in self.skip:
                return

            objects = []
            if cell:
                predicate = self.convert_header(header)
                if predicate is None:
                    log.debug(f'{(header, cell, notes)}')

                for object, label in self.convert_cell(cell):
                    if predicate in NeuronCUT._molecular_predicates:
                        if isinstance(object, tuple):
                            op, *rest = object
                            rest = [OntTerm(o).asIndicator().URIRef for o in rest]
                            object = op, *rest
                        elif object:
                            log.debug(f'{object!r}')
                            object = OntTerm(object).asIndicator().URIRef

                    if isinstance(label, tuple):  # LogicalPhenotype case
                        _err = []
                        for l in label:
                            if self.lower_check(l, cell):
                                _err.append((cell, label))
                        if _err:
                            self.errors.extend(_err)
                        else:
                            objects.append(object)
                    elif self.lower_check(label, cell):
                        self.errors.append((cell, label))
                    elif str(id) == object:
                        self.errors.append((header, cell, object, label))
                        object = None
                    else:
                        objects.append(object)

                if notes:
                    # FIXME this is a hack to only attach to the last value
                    # since we can't distinguish at the moment
                    wat[predicate, object] = notes
                    if object is not None:
                        # object aka iri can be none if we don't find anything
                        object_notes[object] = notes
                    else:
                        predicate_notes[predicate] = notes
                        # FIXME it might also be simpler in some cases
                        # to have this be object_notes[object] = notes
                        # because we are much less likely to have the same
                        # phenotype appear attached to the different dimensions

                        # FIXME comma sep is weak here because the
                        # reference is technically ambiguous
                        # might be an argument for the denormalized form ...
                        # or perhaps having another sheet for cases like that

            else:
                return

            if predicate and objects:
                for object in objects:  # FIXME has layer location phenotype
                    if isinstance(object, tuple):
                        op, *rest = object
                        pes = (Phenotype(r, predicate) for r in rest)  # FIXME nonhomogenous phenotypes
                        phenotypes.append(LogicalPhenotype(op, *pes))
                    elif object:
                        phenotypes.append(Phenotype(object, predicate))
                    else:
                        self.errors.append((object, predicate, cell))
            elif objects:
                self.errors.append((header, objects))
            else:
                self.errors.append((header, cell))
            # translate header -> predicate
            # translate cell value to ontology id

        #########################################

        for j, (header, cell) in enumerate(zip(headers, neuron_row)):
            loop_internal(j, header, cell)

        if current_neuron and phenotypes:
            # TODO merge current with changes
            # or maybe we just replace since all the phenotypes should be there?
            log.debug(phenotypes)
            if id is not None:
                log.debug(f'{(id, bool(id))}')

            elif label_neuron:
                id = make_cut_id(label_neuron)

            if id not in expect_pes:
                if id is not None:
                    log.error(f'{id!r} not in cuts!?')

                return

            phenotypes = sorted(set(phenotypes))
            _ep = expect_pes[id]
            if not allMembers(_ep, *phenotypes) and not neuron_row[self.tomqc_check_ind]:
            #if expect_pes[id] != len(phenotypes):
                # FIXME this is not a strict roundtrip, it may also include additions
                lp = len(phenotypes)
                lep = len(_ep)
                if lp == lep:
                    (pprint(sorted(_ep)))
                    (pprint(phenotypes))
                    pprint(set(_ep) - set(phenotypes))
                    pprint(set(phenotypes) - set(_ep))
                    _AAAAAA = id  # hack for debugger
                    print(_AAAAAA)
                log.error(f'{id!r} failed roundtrip {lp} != {lep}')
                self.failed[id] = phenotypes
                return

            neuron = NeuronCUT(*phenotypes, id_=id, label=label_neuron,
                               override=bool(id) or bool(label_neuron))
            neuron.adopt_meta(current_neuron)
            # FIXME occasionally this will error?!
            yield neuron

        else:
            return  # FIXME this polutes everything ???
        """
            fn = fixname(label_neuron)
            if not phenotypes and i:  # i skips header
                self.errors.append((i, neuron_row))  # TODO special review for phenos but not current
                phenotypes = Phenotype('TEMP:phenotype/' + fn),

            neuron = NeuronCUT(*phenotypes,
                               id_=make_cut_id(label_neuron),
                               label=label_neuron, override=True)

        """
        ###################################################

        # update the meta if there were any changes
        if definition_neuron is not None:
            neuron.definition = definition_neuron

        if synonyms_neuron is not None:
            neuron.synonyms = synonyms_neuron

        try:
            neuron.batchAnnotateByObject(object_notes)
            neuron.batchAnnotate(other_notes)
        except AttributeError as e:
            #breakpoint()
            log.exception(e) #'something very strage has happened\n', e)
            pass  # FIXME FIXME FIXME

        #neuron.batchAnnotateByPredicate(predicate_notes)  # TODO
        # FIXME doesn't quite work in this context, but there are other
        # cases where annotations to the general modality are still desireable
        # FIXME there may be no predicate? if the object fails to match?

        if do_release:
            self.release.append(neuron)
Example #8
0
def sheet_to_neurons(values, notes_index, expect_pes):
    # TODO import existing ids to register by label
    sgv = Vocabulary()
    e_config = Config('common-usage-types')
    e_config.load_existing()
    query = oq.OntQuery(oq.plugin.get('rdflib')(e_config.core_graph), instrumented=OntTerm)
    # FIXME clear use case for the remaining bound to whatever query produced it rather
    # than the other way around ... how to support this use case ...
    existing = {str(n.origLabel):n for n in e_config.neurons()}
    def convert_header(header):
        if header.startswith('has'):  # FIXME use a closed namespace
            return ilxtr[header]
        else:
            return None

    def convert_other(header):
        if header == 'label':
            return rdfs.label
        elif header == 'curie':
            return rdf.type
        elif header == 'definition':
            return definition
        else:
            header = header.replace(' ', '_')
            return TEMP[header]  # FIXME

    def mapCell(cell, syns=False):
        search_prefixes = ('UBERON', 'CHEBI', 'PR', 'NCBITaxon', 'NCBIGene', 'ilxtr', 'NIFEXT', 'SAO', 'NLXMOL',
                           'BIRNLEX',)

        if ':' in cell and ' ' not in cell:
            log.debug(cell)
            if 'http' in cell:
                if cell.startswith('http'):
                    t = OntTerm(iri=cell)
                else:
                    return None, None  # garbage with http inline
            else:
                t = OntTerm(cell, exclude_prefix=('FMA',))  # FIXME need better error message in ontquery

            return t.u, t.label

        result = [r for r in sgv.findByTerm(cell, searchSynonyms=syns, prefix=search_prefixes)
                  if not r['deprecated']]
        #printD(cell, result)
        if not result:
            log.debug(f'{cell}')
            maybe = list(query(label=cell, exclude_prefix=('FMA',)))
            if maybe:
                qr = maybe[0]
                return qr.OntTerm.u, qr.label
            elif not syns:
                return mapCell(cell, syns=True)
            else:
                return None, None
        elif len(result) > 1:
            #printD('WARNING', result)
            result = select_by_curie_rank(result)
        else:
            result = result[0]

        return rdflib.URIRef(result['iri']), result['labels'][0]

    def lower_check(label, cell):
        return label not in cell and label.lower() not in cell.lower()  # have to handle comma sep case

    lnlu = {v:k for k, v in LogicalPhenotype.local_names.items()}
    def convert_cell(cell_or_comma_sep):
        #printD('CONVERTING', cell_or_comma_sep)
        for cell_w_junk in cell_or_comma_sep.split(','):  # XXX WARNING need a way to alter people to this
            cell = cell_w_junk.strip()
            if cell.startswith('(OR') or cell.startswith('(AND'):
                start, *middle, end = cell.split('" "')
                OPoperator, first = start.split(' "')
                operator = OPoperator[1:]
                operator = lnlu[operator]
                last, CP = end.rsplit('"')
                iris, labels = [], []
                for term in (first, *middle, last):
                    iri, label = mapCell(term)
                    if label is None:
                        label = cell_or_comma_sep
                    iris.append(iri)
                    labels.append(label)

                yield (operator, *iris), tuple(labels)

            else:
                iri, label = mapCell(cell)
                if label is None:
                    yield iri, cell_or_comma_sep  # FIXME need a way to handle this that doesn't break things?
                else:
                    yield iri, label

    config = Config('cut-roundtrip')
    skip = 'alignment label',
    headers, *rows = values
    errors = []
    new = []
    release = []
    for i, neuron_row in enumerate(rows):
        id = None
        label_neuron  = None
        definition_neuron = None
        synonyms_neuron = None
        current_neuron = None
        phenotypes = []
        do_release = False
        predicate_notes = {}
        object_notes = {}
        other_notes = {}
        wat = {}
        for j, (header, cell) in enumerate(zip(headers, neuron_row)):
            notes = list(process_note(get_note(i + 1, j, notes_index)))  # + 1 since headers is removed
            if notes and not header.startswith('has'):
                _predicate = convert_other(header)
                if cell:
                    _object = rdflib.Literal(cell)  # FIXME curies etc.
                else:
                    _object = rdf.nil
                other_notes[_predicate, _object] = notes

            if header == 'curie':
                id = OntId(cell).u if cell else None
                continue
            elif header == 'label':
                label_neuron = cell
                if cell in existing:
                    current_neuron = existing[cell]
                elif cell:
                    # TODO
                    new.append(cell)
                else:
                    raise ValueError(cell)  # wat
                continue
            elif header == 'Status':
                # TODO
                if cell == 'Yes':
                    do_release = True
                elif cell == 'Maybe':
                    pass
                elif cell == 'Not yet':
                    pass
                elif cell == 'Delete':
                    pass
                else:
                    pass

                continue
            elif header == 'PMID':
                # TODO
                continue
            elif header == 'Other reference':
                # TODO
                continue
            elif header == 'Other label':
                # TODO
                continue
            elif header == 'definition':
                continue  # FIXME single space differences between the spreadsheet and the source

                if cell:
                    definition_neuron = rdflib.Literal(cell)

                continue

            elif header == 'synonyms':
                if cell:
                    synonyms_neuron = [rdflib.Literal(s.strip())
                                    # FIXME bare comma is extremely dangerous
                                    for s in cell.split(',')]

                continue
            elif header in skip:
                continue

            objects = []
            if cell:
                predicate = convert_header(header)
                if predicate is None:
                    log.debug(f'{(header, cell, notes)}')

                for object, label in convert_cell(cell):
                    if isinstance(label, tuple):  # LogicalPhenotype case
                        _err = []
                        for l in label:
                            if lower_check(l, cell):
                                _err.append((cell, label))
                        if _err:
                            errors.extend(_err)
                        else:
                            objects.append(object)
                    elif lower_check(label, cell):
                        errors.append((cell, label))
                    elif str(id) == object:
                        errors.append((header, cell, object, label))
                        object = None
                    else:
                        objects.append(object)

                if notes:
                    # FIXME this is a hack to only attach to the last value
                    # since we can't distinguish at the moment
                    wat[predicate, object] = notes
                    if object is not None:
                        # object aka iri can be none if we don't find anything
                        object_notes[object] = notes
                    else:
                        predicate_notes[predicate] = notes
                        # FIXME it might also be simpler in some cases
                        # to have this be object_notes[object] = notes
                        # because we are much less likely to have the same
                        # phenotype appear attached to the different dimensions

                        # FIXME comma sep is weak here because the
                        # reference is technically ambiguous
                        # might be an argument for the denormalized form ...
                        # or perhaps having another sheet for cases like that

            else:
                continue

            if predicate and objects:
                for object in objects:  # FIXME has layer location phenotype
                    if isinstance(object, tuple):
                        op, *rest = object
                        pes = (Phenotype(r, predicate) for r in rest)  # FIXME nonhomogenous phenotypes
                        phenotypes.append(LogicalPhenotype(op, *pes))
                    elif object:
                        phenotypes.append(Phenotype(object, predicate))
                    else:
                        errors.append((object, predicate, cell))
            elif objects:
                errors.append((header, objects))
            else:
                errors.append((header, cell))
            # translate header -> predicate
            # translate cell value to ontology id

        if current_neuron and phenotypes:
            # TODO merge current with changes
            # or maybe we just replace since all the phenotypes should be there?
            log.debug(phenotypes)
            if id is not None:
                log.debug(f'{(id, bool(id))}')

            elif label_neuron:
                id = make_cut_id(label_neuron)

            if id not in expect_pes:
                log.error(f'{id!r} not in cuts!?')
                continue

            if expect_pes[id] != len(phenotypes):
                log.error(f'{id!r} failed roundtrip {len(phenotypes)} != {expect_pes[id]}')
                continue

            neuron = NeuronCUT(*phenotypes, id_=id, label=label_neuron,
                               override=bool(id) or bool(label_neuron))
            neuron.adopt_meta(current_neuron)
            # FIXME occasionally this will error?!
        else:
            continue  # FIXME this polutes everything ???
            fn = fixname(label_neuron)
            if not phenotypes and i:  # i skips header
                errors.append((i, neuron_row))  # TODO special review for phenos but not current
                phenotypes = Phenotype('TEMP:phenotype/' + fn),

            neuron = NeuronCUT(*phenotypes,
                               id_=make_cut_id(label_neuron),
                               label=label_neuron, override=True)

        # update the meta if there were any changes
        if definition_neuron is not None:
            neuron.definition = definition_neuron

        if synonyms_neuron is not None:
            neuron.synonyms = synonyms_neuron

        try:
            neuron.batchAnnotateByObject(object_notes)
            neuron.batchAnnotate(other_notes)
        except AttributeError as e:
            #embed()
            log.exception(e) #'something very strage has happened\n', e)
            pass  # FIXME FIXME FIXME

        #neuron.batchAnnotateByPredicate(predicate_notes)  # TODO
        # FIXME doesn't quite work in this context, but there are other
        # cases where annotations to the general modality are still desireable
        # FIXME there may be no predicate? if the object fails to match?

        if do_release:
            release.append(neuron)

    return config, errors, new, release