def diags_cp_cm(x, y): dd.read_parameters() diagdir = '/scratch/01658/drhatch/dna_out' par['diagdir'] = "\'" + diagdir + "\'" time = dd.get_time_from_gout() kx, ky, kz, hermiteNumbers = dd.get_grids() print 'kx =', np.shape(kx) print 'ky =', np.shape(ky) print 'kz =', np.shape(kz) print 'n =', np.shape(hermiteNumbers) g_in = dd.read_time_step_g(len(time) - 1) g_in = np.reshape(g_in, (par['nkx0'], par['nky0'], par['nkz0'], par['nv0']), order='F') x = x y = y dist = g_in[x, y, :, :] #distribution function: 2d slice of 4d g_in #make a new 2d array with the same dimensions as dist_ shape = np.shape(dist) dist_t = np.empty(shape) for i in range(len(kz)): for j in range(len(hermiteNumbers)): dist_t[i, j] = (1j * np.sign(kz[i]))**hermiteNumbers[j] * dist[i, j] dist_tp = np.empty(shape) dist_tm = np.empty(shape) for i in range(len(kz)): for j in range(len(hermiteNumbers) + 1): if j < (len(hermiteNumbers) - 1): dist_tp[i, j] = (dist_t[i, j] + dist_t[i, j + 1]) / 2 dist_tm[i, j] = (dist_t[i, j] - dist_t[i, j + 1]) / 2 c_p = np.empty(np.shape(dist_tp)) c_m = np.empty(np.shape(dist_tm)) for i in range(len(kz)): for j in range(len(kz)): c_p[i, j] = dist_tp[i, j] * np.conjugate(dist_tp[i, j]) c_m[i, j] = dist_tm[i, j] * np.conjugate(dist_tm[i, j]) c_ps = np.sum(c_p, axis=0) c_ms = np.sum(c_m, axis=0) xf = kx[x] yf = ky[y] return c_ps, c_ms, xf, yf
def calculate_g(kx, ky, kz, nmax, nu, gam0): """calculates g using eigenvector g""" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dd.read_parameters() diagdir = '/scratch/01658/drhatch/dna_out' par['diagdir'] = "\'" + diagdir + "\'" time = dd.get_time_from_gout() kx, ky, kz, herm_grid = dd.get_grids() nmax = 36 mat.set_nmax(nmax) Gam0 = mat.get_gamma0() par['nu'] = 0.002222 print 'nu = ', par['nu'] par['omn'] = 0 par['omt'] = 0 par['hyp_x'] = 0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~`` omega, freq, growth, evec = mat.get_spectrum(kx, ky, kz, Gam0, nu) g_max, gi_max = max_g(growth) g_0 = evec[:, gi_max] nu_bar = nu / kz g_calc = np.empty(nmax, dtype=complex) for n in range(nmax): if n == 0 or n == 1: g_calc[0] = g_0[0] g_calc[1] = g_0[1] else: g_calc[n] = ((omega[gi_max] / kz + 1j * nu_bar * (n - 1)) * g_0[n - 1] - (n - 1)**(.5) * g_0[n - 2]) / ((n)**(.5)) err = find_error(g_0, g_calc, nmax) plot_eig_vec(g_calc, g_0, herm_grid, nmax) plot_error(err, herm_grid, nmax) return g_calc, g_0
from scipy.stats import linregress from config import * import new_dd as dd from ev_diags import * import time as t2 from spectra import * from nlt_diags import * #from landau_tests import * import os import matrix_maker as mat dd.read_parameters() diagdir = '/scratch/01658/drhatch/dna_out' par['diagdir'] = "\'" + diagdir + "\'" time = dd.get_time_from_gout() kx, ky, kz, herm_grid = dd.get_grids() nmax = 40 mat.set_nmax(nmax) par['nu'] = 0.05 print 'nu = ', par['nu'] print 'kz = ', kz par['omn'] = 0 par['omt'] = 0 par['hyp_x'] = 0 par['hyp_y'] = 0 par['hyp_v'] = 0 par['nuno_closure'] = False