def fit(self, X, T, E, X_val=None, T_val=None, E_val=None, **kwargs): """Fits an NGBoost survival model to the data. For additional parameters see ngboost.NGboost.fit Parameters: X : DataFrame object or List or numpy array of predictors (n x p) in Numeric format T : DataFrame object or List or numpy array of times to event or censoring (n) (floats). E : DataFrame object or List or numpy array of event indicators (n). E[i] = 1 <=> T[i] is the time of an event, else censoring time T_val : DataFrame object or List or validation-set times, in numeric format if any E_val : DataFrame object or List or validation-set event idicators, in numeric format if any """ X = check_array(X) if X_val is not None: X_val = check_array(X_val) return super().fit( X, Y_from_censored(T, E), X_val=X_val, Y_val=Y_from_censored(T_val, E_val), **kwargs, )
def fit(self, X, T, E, X_val=None, T_val=None, E_val=None, **kwargs): ''' Fits an NGBoost survival model to the data. For additional parameters see ngboost.NGboost.fit Parameters: X : numpy array of predictors (n x p) T : numpy array of times to event or censoring (n). Should be floats E : numpy array of event indicators (n). E[i] = 1 <=> T[i] is the time of an event, else censoring time T_val : validation-set times, if any E_val : validation-set event idicators, if any ''' return super().fit(X, Y_from_censored(T, E), X_val=X_val, Y_val=Y_from_censored(T_val, E_val), **kwargs)
def d_score(self, Y): return super().d_score(Y_from_censored(Y))