Example #1
0
def test_classification():
    from sklearn.datasets import load_breast_cancer
    from sklearn.metrics import roc_auc_score, log_loss
    data, target = load_breast_cancer(True)
    x_train, x_test, y_train, y_test = train_test_split(data,
                                                        target,
                                                        test_size=0.2,
                                                        random_state=42)
    ngb = NGBClassifier(Dist=Bernoulli, verbose=False)
    ngb.fit(x_train, y_train)
    preds = ngb.predict(x_test)
    score = roc_auc_score(y_test, preds)
    assert score >= 0.95

    preds = ngb.predict_proba(x_test)
    score = log_loss(y_test, preds)
    assert score <= 0.20

    score = ngb.score(x_test, y_test)
    assert score <= 0.20

    dist = ngb.pred_dist(x_test)
    assert isinstance(dist, Bernoulli)

    score = roc_auc_score(y_test, preds[:, 1])
    assert score >= 0.95
Example #2
0
def test_classification(breast_cancer_data):
    from sklearn.metrics import roc_auc_score, log_loss

    x_train, x_test, y_train, y_test = breast_cancer_data
    ngb = NGBClassifier(Dist=Bernoulli, verbose=False)
    ngb.fit(x_train, y_train)
    preds = ngb.predict(x_test)
    score = roc_auc_score(y_test, preds)

    # loose score requirement so it isn't failing all the time
    assert score >= 0.85

    preds = ngb.predict_proba(x_test)
    score = log_loss(y_test, preds)
    assert score <= 0.30

    score = ngb.score(x_test, y_test)
    assert score <= 0.30

    dist = ngb.pred_dist(x_test)
    assert isinstance(dist, Bernoulli)

    score = roc_auc_score(y_test, preds[:, 1])

    assert score >= 0.85