Example #1
0
    def test_dip_over_90_degree(self):
        top = [Point(0, -0.01), Point(0, 0.01)]
        bottom = [Point(-0.01, -0.01, 1.11), Point(-0.01, 0.01, 1.11)]

        mesh = RectangularMesh.from_points_list([top, bottom])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        # dip must be still in a range 0..90
        self.assertAlmostEqual(dip, 45, delta=0.05)
        # strike must be reversed
        self.assertAlmostEqual(strike, 180, delta=0.05)
Example #2
0
    def test_dip_over_90_degree(self):
        top = [Point(0, -0.01), Point(0, 0.01)]
        bottom = [Point(-0.01, -0.01, 1.11), Point(-0.01, 0.01, 1.11)]

        mesh = RectangularMesh.from_points_list([top, bottom])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        # dip must be still in a range 0..90
        self.assertAlmostEqual(dip, 45, delta=0.05)
        # strike must be reversed
        self.assertAlmostEqual(strike, 180, delta=0.05)
Example #3
0
    def test_from_points_list(self):
        lons = [[0, 1], [2, 3], [4, 5]]
        lats = [[1, 2], [-1, -2], [10, 20]]
        depths = [[11.1, 11.2], [11.3, 11.4], [11.5, 11.6]]
        points = [[
            Point(lons[i][j], lats[i][j], depths[i][j])
            for j in xrange(len(lons[i]))
        ] for i in xrange(len(lons))]
        mesh = RectangularMesh.from_points_list(points)
        self.assertTrue((mesh.lons == lons).all())
        self.assertTrue((mesh.lats == lats).all())
        self.assertTrue((mesh.depths == depths).all())

        points = [[
            Point(lons[i][j], lats[i][j], depth=0)
            for j in xrange(len(lons[i]))
        ] for i in xrange(len(lons))]
        mesh = RectangularMesh.from_points_list(points)
        self.assertTrue((mesh.lons == lons).all())
        self.assertTrue((mesh.lats == lats).all())
        self.assertIsNone(mesh.depths)
Example #4
0
    def from_fault_data(cls, fault_trace, upper_seismogenic_depth,
                        lower_seismogenic_depth, dip, mesh_spacing):
        """
        Create and return a fault surface using fault source data.

        :param fault_trace:
            Geographical line representing the intersection between
            the fault surface and the earth surface, an instance
            of :class:`nhlib.Line`.
        :param upper_seismo_depth:
            Minimum depth ruptures can reach, in km (i.e. depth
            to fault's top edge).
        :param lower_seismo_depth:
            Maximum depth ruptures can reach, in km (i.e. depth
            to fault's bottom edge).
        :param dip:
            Dip angle (i.e. angle between fault surface
            and earth surface), in degrees.
        :param mesh_spacing:
            Distance between two subsequent points in a mesh, in km.
        :returns:
            An instance of :class:`SimpleFaultSurface` created using that data.

        Uses :meth:`check_fault_data` for checking parameters.
        """
        cls.check_fault_data(fault_trace, upper_seismogenic_depth,
                             lower_seismogenic_depth, dip, mesh_spacing)
        # Loops over points in the top edge, for each point
        # on the top edge compute corresponding point on the bottom edge, then
        # computes equally spaced points between top and bottom points.

        vdist_top = upper_seismogenic_depth
        vdist_bottom = lower_seismogenic_depth

        hdist_top = vdist_top / math.tan(math.radians(dip))
        hdist_bottom = vdist_bottom / math.tan(math.radians(dip))

        strike = fault_trace[0].azimuth(fault_trace[-1])
        azimuth = (strike + 90.0) % 360

        mesh = []
        for point in fault_trace.resample(mesh_spacing):
            top = point.point_at(hdist_top, vdist_top, azimuth)
            bottom = point.point_at(hdist_bottom, vdist_bottom, azimuth)
            mesh.append(top.equally_spaced_points(bottom, mesh_spacing))

        # number of rows corresponds to number of points along dip
        # number of columns corresponds to number of points along strike
        surface_points = numpy.array(mesh).transpose().tolist()
        mesh = RectangularMesh.from_points_list(surface_points)
        assert 1 not in mesh.shape
        return cls(mesh)
Example #5
0
    def test_one_cell(self):
        top = [Point(0, -0.01), Point(0, 0.01)]
        bottom = [Point(0.01, -0.01, 1.11), Point(0.01, 0.01, 1.11)]

        mesh = RectangularMesh.from_points_list([top, bottom])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, 45, delta=0.05)
        self.assertAlmostEqual(strike, 0, delta=0.05)

        row1 = [Point(45, -0.1), Point(45.2, 0.1)]
        row2 = [Point(45, -0.1, 1), Point(45.2, 0.1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, 90)
        self.assertAlmostEqual(strike, 45, delta=0.1)

        row1 = [Point(90, -0.1), Point(90, 0.1)]
        row2 = [Point(90, -0.1, 1), Point(90, 0.1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, 90)
        self.assertAlmostEqual(strike, 0, delta=0.1)
Example #6
0
    def test_one_cell(self):
        top = [Point(0, -0.01), Point(0, 0.01)]
        bottom = [Point(0.01, -0.01, 1.11), Point(0.01, 0.01, 1.11)]

        mesh = RectangularMesh.from_points_list([top, bottom])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, 45, delta=0.05)
        self.assertAlmostEqual(strike, 0, delta=0.05)

        row1 = [Point(45, -0.1), Point(45.2, 0.1)]
        row2 = [Point(45, -0.1, 1), Point(45.2, 0.1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, 90)
        self.assertAlmostEqual(strike, 45, delta=0.1)

        row1 = [Point(90, -0.1), Point(90, 0.1)]
        row2 = [Point(90, -0.1, 1), Point(90, 0.1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, 90)
        self.assertAlmostEqual(strike, 0, delta=0.1)
Example #7
0
    def from_fault_data(cls, fault_trace, upper_seismogenic_depth,
                        lower_seismogenic_depth, dip, mesh_spacing):
        """
        Create and return a fault surface using fault source data.

        :param nhlib.geo.line.Line fault_trace:
            Geographical line representing the intersection between
            the fault surface and the earth surface.
        :param upper_seismo_depth:
            Minimum depth ruptures can reach, in km (i.e. depth
            to fault's top edge).
        :param lower_seismo_depth:
            Maximum depth ruptures can reach, in km (i.e. depth
            to fault's bottom edge).
        :param dip:
            Dip angle (i.e. angle between fault surface
            and earth surface), in degrees.
        :param mesh_spacing:
            Distance between two subsequent points in a mesh, in km.
        :returns:
            An instance of :class:`SimpleFaultSurface` created using that data.

        Uses :meth:`check_fault_data` for checking parameters.
        """
        cls.check_fault_data(fault_trace, upper_seismogenic_depth,
                             lower_seismogenic_depth, dip, mesh_spacing)
        # Loops over points in the top edge, for each point
        # on the top edge compute corresponding point on the bottom edge, then
        # computes equally spaced points between top and bottom points.

        vdist_top = upper_seismogenic_depth
        vdist_bottom = lower_seismogenic_depth

        hdist_top = vdist_top / math.tan(math.radians(dip))
        hdist_bottom = vdist_bottom / math.tan(math.radians(dip))

        strike = fault_trace[0].azimuth(fault_trace[-1])
        azimuth = (strike + 90.0) % 360

        mesh = []
        for point in fault_trace.resample(mesh_spacing):
            top = point.point_at(hdist_top, vdist_top, azimuth)
            bottom = point.point_at(hdist_bottom, vdist_bottom, azimuth)
            mesh.append(top.equally_spaced_points(bottom, mesh_spacing))

        # number of rows corresponds to number of points along dip
        # number of columns corresponds to number of points along strike
        surface_points = numpy.array(mesh).transpose().tolist()
        mesh = RectangularMesh.from_points_list(surface_points)
        assert 1 not in mesh.shape
        return cls(mesh)
Example #8
0
    def test_one_cell_unequal_area(self):
        # top-left triangle is vertical, has dip of 90 degrees, zero
        # strike and area of 1 by 1 over 2. bottom-right one has dip
        # of atan2(1, sqrt(2) / 2.0) which is 54.73561 degrees, strike
        # of 45 degrees and area that is 1.73246136 times area of the
        # first one's. weighted mean dip is 67.5 degrees and weighted
        # mean strike is 28.84 degrees
        top = [Point(0, -0.01), Point(0, 0.01)]
        bottom = [Point(0, -0.01, 2.22), Point(0.02, 0.01, 2.22)]

        mesh = RectangularMesh.from_points_list([top, bottom])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, 67.5, delta=0.05)
        self.assertAlmostEqual(strike, 28.84, delta=0.05)
Example #9
0
    def test_from_points_list(self):
        lons = [[0, 1], [2, 3], [4, 5]]
        lats = [[1, 2], [-1, -2], [10, 20]]
        depths = [[11.1, 11.2], [11.3, 11.4], [11.5, 11.6]]
        points = [
            [Point(lons[i][j], lats[i][j], depths[i][j])
             for j in xrange(len(lons[i]))]
            for i in xrange(len(lons))
        ]
        mesh = RectangularMesh.from_points_list(points)
        self.assertTrue((mesh.lons == lons).all())
        self.assertTrue((mesh.lats == lats).all())
        self.assertTrue((mesh.depths == depths).all())

        points = [
            [Point(lons[i][j], lats[i][j], depth=0)
             for j in xrange(len(lons[i]))]
            for i in xrange(len(lons))
        ]
        mesh = RectangularMesh.from_points_list(points)
        self.assertTrue((mesh.lons == lons).all())
        self.assertTrue((mesh.lats == lats).all())
        self.assertIsNone(mesh.depths)
Example #10
0
    def test_one_cell_unequal_area(self):
        # top-left triangle is vertical, has dip of 90 degrees, zero
        # strike and area of 1 by 1 over 2. bottom-right one has dip
        # of atan2(1, sqrt(2) / 2.0) which is 54.73561 degrees, strike
        # of 45 degrees and area that is 1.73246136 times area of the
        # first one's. weighted mean dip is 67.5 degrees and weighted
        # mean strike is 28.84 degrees
        top = [Point(0, -0.01), Point(0, 0.01)]
        bottom = [Point(0, -0.01, 2.22), Point(0.02, 0.01, 2.22)]

        mesh = RectangularMesh.from_points_list([top, bottom])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, 67.5, delta=0.05)
        self.assertAlmostEqual(strike, 28.84, delta=0.05)
Example #11
0
    def from_fault_data(cls, edges, mesh_spacing):
        """
        Create and return a fault surface using fault source data.

        :param edges:
            A list of at least two horizontal edges of the surface
            as instances of :class:`nhlib.geo.line.Line`. The list
            should be in top-to-bottom order (the shallowest edge
            first).
        :param mesh_spacing:
            Distance between two subsequent points in a mesh, in km.
        :returns:
            An instance of :class:`ComplexFaultSurface` created using
            that data.
        :raises ValueError:
            If requested mesh spacing is too big for the surface geometry
            (doesn't allow to put a single mesh cell along length and/or
            width).

        Uses :meth:`check_fault_data` for checking parameters.
        """
        cls.check_fault_data(edges, mesh_spacing)

        mean_length = numpy.mean([edge.get_length() for edge in edges])
        num_hor_points = int(round(mean_length / mesh_spacing)) + 1
        if num_hor_points <= 1:
            raise ValueError(
                'mesh spacing %.1f km is too big for mean length %.1f km' %
                (mesh_spacing, mean_length))
        edges = [
            edge.resample_to_num_points(num_hor_points).points
            for i, edge in enumerate(edges)
        ]

        vert_edges = [Line(v_edge) for v_edge in zip(*edges)]
        mean_width = numpy.mean([v_edge.get_length() for v_edge in vert_edges])
        num_vert_points = int(round(mean_width / mesh_spacing)) + 1
        if num_vert_points <= 1:
            raise ValueError(
                'mesh spacing %.1f km is too big for mean width %.1f km' %
                (mesh_spacing, mean_width))

        points = zip(*[
            v_edge.resample_to_num_points(num_vert_points).points
            for v_edge in vert_edges
        ])
        mesh = RectangularMesh.from_points_list(points)
        assert 1 not in mesh.shape
        return cls(mesh)
Example #12
0
    def from_fault_data(cls, edges, mesh_spacing):
        """
        Create and return a fault surface using fault source data.

        :param edges:
            A list of at least two horizontal edges of the surface
            as instances of :class:`nhlib.geo.line.Line`. The list
            should be in top-to-bottom order (the shallowest edge
            first).
        :param mesh_spacing:
            Distance between two subsequent points in a mesh, in km.
        :returns:
            An instance of :class:`ComplexFaultSurface` created using
            that data.
        :raises ValueError:
            If requested mesh spacing is too big for the surface geometry
            (doesn't allow to put a single mesh cell along length and/or
            width).

        Uses :meth:`check_fault_data` for checking parameters.
        """
        cls.check_fault_data(edges, mesh_spacing)

        mean_length = numpy.mean([edge.get_length() for edge in edges])
        num_hor_points = int(round(mean_length / mesh_spacing)) + 1
        if num_hor_points <= 1:
            raise ValueError(
                'mesh spacing %.1f km is too big for mean length %.1f km' %
                (mesh_spacing, mean_length)
            )
        edges = [edge.resample_to_num_points(num_hor_points).points
                 for i, edge in enumerate(edges)]

        vert_edges = [Line(v_edge) for v_edge in zip(*edges)]
        mean_width = numpy.mean([v_edge.get_length() for v_edge in vert_edges])
        num_vert_points = int(round(mean_width / mesh_spacing)) + 1
        if num_vert_points <= 1:
            raise ValueError(
                'mesh spacing %.1f km is too big for mean width %.1f km' %
                (mesh_spacing, mean_width)
            )

        points = zip(*[v_edge.resample_to_num_points(num_vert_points).points
                       for v_edge in vert_edges])
        mesh = RectangularMesh.from_points_list(points)
        assert 1 not in mesh.shape
        return cls(mesh)
Example #13
0
    def test_two_cells(self):
        top = [Point(0, -0.01), Point(0, 0.01)]
        middle = [Point(0.01, -0.01, 1.11), Point(0.01, 0.01, 1.11)]
        bottom = [Point(0.01, -0.01, 2.22), Point(0.01, 0.01, 2.22)]

        mesh = RectangularMesh.from_points_list([top, middle, bottom])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, math.degrees(math.atan2(2, 1)), delta=0.1)
        self.assertAlmostEqual(strike, 0, delta=0.02)

        bottom = [Point(0.01, -0.01, 3.33), Point(0.01, 0.01, 3.33)]
        mesh = RectangularMesh.from_points_list([top, middle, bottom])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, math.degrees(math.atan2(3, 1)), delta=0.1)
        self.assertAlmostEqual(strike, 0, delta=0.02)

        row1 = [Point(90, -0.1), Point(90, 0), Point(90, 0.1)]
        row2 = [Point(90, -0.1, 1), Point(90, 0, 1), Point(90, 0.1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, 90)
        assert_angles_equal(self, strike, 360, delta=1e-7)

        row1 = [Point(-90.1, -0.1), Point(-90, 0), Point(-89.9, 0.1)]
        row2 = [
            Point(-90.0, -0.1, 1),
            Point(-89.9, 0, 1),
            Point(-89.8, 0.1, 1)
        ]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(strike, 45, delta=1e-4)

        row1 = [Point(-90.1, -0.1), Point(-90, 0), Point(-89.9, 0.1)]
        row2 = [
            Point(-90.0, -0.1, 1),
            Point(-89.9, 0, 1),
            Point(-89.8, 0.1, 1)
        ]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(strike, 45, delta=1e-3)

        row1 = [Point(-90.1, -0.1), Point(-90, 0), Point(-89.9, 0.1)]
        row2 = [Point(-90.2, -0.1, 1), Point(-90.1, 0, 1), Point(-90, 0.1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(strike, 225, delta=1e-3)
Example #14
0
    def test_on_surface(self):
        row1 = [Point(0, 0), Point(0, 1)]
        row2 = [Point(1, 0), Point(1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 0, delta=0.5)

        row1 = [Point(0, 0), Point(0, -1)]
        row2 = [Point(1, 0), Point(1, -1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 180, delta=0.5)

        row1 = [Point(0, 0), Point(1, 1)]
        row2 = [Point(1, 0), Point(2, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 45, delta=0.01)

        row1 = [Point(0, 0), Point(1, -1)]
        row2 = [Point(1, 0), Point(2, -1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 135, delta=0.01)

        row1 = [Point(0, 0), Point(-1, -1)]
        row2 = [Point(-1, 0), Point(-2, -1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 225, delta=0.01)

        row1 = [Point(0, 0), Point(-1, 1)]
        row2 = [Point(-1, 0), Point(-2, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 315, delta=0.01)
Example #15
0
    def test_on_surface(self):
        row1 = [Point(0, 0), Point(0, 1)]
        row2 = [Point(1, 0), Point(1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 0, delta=0.5)

        row1 = [Point(0, 0), Point(0, -1)]
        row2 = [Point(1, 0), Point(1, -1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 180, delta=0.5)

        row1 = [Point(0, 0), Point(1, 1)]
        row2 = [Point(1, 0), Point(2, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 45, delta=0.01)

        row1 = [Point(0, 0), Point(1, -1)]
        row2 = [Point(1, 0), Point(2, -1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 135, delta=0.01)

        row1 = [Point(0, 0), Point(-1, -1)]
        row2 = [Point(-1, 0), Point(-2, -1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 225, delta=0.01)

        row1 = [Point(0, 0), Point(-1, 1)]
        row2 = [Point(-1, 0), Point(-2, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertEqual(dip, 0)
        self.assertAlmostEqual(strike, 315, delta=0.01)
Example #16
0
    def test_two_cells(self):
        top = [Point(0, -0.01), Point(0, 0.01)]
        middle = [Point(0.01, -0.01, 1.11), Point(0.01, 0.01, 1.11)]
        bottom = [Point(0.01, -0.01, 2.22), Point(0.01, 0.01, 2.22)]

        mesh = RectangularMesh.from_points_list([top, middle, bottom])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, math.degrees(math.atan2(2, 1)), delta=0.1)
        self.assertAlmostEqual(strike, 0, delta=0.02)

        bottom = [Point(0.01, -0.01, 3.33), Point(0.01, 0.01, 3.33)]
        mesh = RectangularMesh.from_points_list([top, middle, bottom])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, math.degrees(math.atan2(3, 1)), delta=0.1)
        self.assertAlmostEqual(strike, 0, delta=0.02)

        row1 = [Point(90, -0.1), Point(90, 0), Point(90, 0.1)]
        row2 = [Point(90, -0.1, 1), Point(90, 0, 1), Point(90, 0.1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(dip, 90)
        assert_angles_equal(self, strike, 360, delta=1e-7)

        row1 = [Point(-90.1, -0.1), Point(-90, 0), Point(-89.9, 0.1)]
        row2 = [Point(-90.0, -0.1, 1), Point(-89.9, 0, 1), Point(-89.8, 0.1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(strike, 45, delta=1e-4)

        row1 = [Point(-90.1, -0.1), Point(-90, 0), Point(-89.9, 0.1)]
        row2 = [Point(-90.0, -0.1, 1), Point(-89.9, 0, 1), Point(-89.8, 0.1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(strike, 45, delta=1e-3)

        row1 = [Point(-90.1, -0.1), Point(-90, 0), Point(-89.9, 0.1)]
        row2 = [Point(-90.2, -0.1, 1), Point(-90.1, 0, 1), Point(-90, 0.1, 1)]
        mesh = RectangularMesh.from_points_list([row1, row2])
        dip, strike = mesh.get_mean_inclination_and_azimuth()
        self.assertAlmostEqual(strike, 225, delta=1e-3)
Example #17
0
 def _create_mesh(self):
     points = [[Point(*coordinates) for coordinates in row]
               for row in self.coordinates_list]
     return RectangularMesh.from_points_list(points)
Example #18
0
 def _create_mesh(self):
     points = [[Point(*coordinates) for coordinates in row] for row in self.coordinates_list]
     return RectangularMesh.from_points_list(points)