def test_sigma2fwhm(): # Test from constant assert_almost_equal(sigma2fwhm(1), 2.3548200) assert_almost_equal(sigma2fwhm([1, 2, 3]), np.arange(1, 4) * 2.3548200) assert_almost_equal(fwhm2sigma(2.3548200), 1) assert_almost_equal(fwhm2sigma(np.arange(1, 4) * 2.3548200), [1, 2, 3]) # direct test fwhm2sigma and sigma2fwhm are inverses of each other fwhm = np.arange(1.0, 5.0, 0.1) sigma = np.arange(1.0, 5.0, 0.1) assert_true(np.allclose(sigma2fwhm(fwhm2sigma(fwhm)), fwhm)) assert_true(np.allclose(fwhm2sigma(sigma2fwhm(sigma)), sigma))
def test_sigma2fwhm(): # Test from constant assert_almost_equal(sigma2fwhm(1), 2.3548200) assert_almost_equal(sigma2fwhm([1, 2, 3]), np.arange(1, 4) * 2.3548200) assert_almost_equal(fwhm2sigma(2.3548200), 1) assert_almost_equal(fwhm2sigma(np.arange(1, 4) * 2.3548200), [1, 2, 3]) # direct test fwhm2sigma and sigma2fwhm are inverses of each other fwhm = np.arange(1.0, 5.0, 0.1) sigma = np.arange(1.0, 5.0, 0.1) assert np.allclose(sigma2fwhm(fwhm2sigma(fwhm)), fwhm) assert np.allclose(fwhm2sigma(sigma2fwhm(sigma)), sigma)
def __init__(self, dimension_selection, slice_number, smoothing_sigma, gauss_sigma, threshold): # Image parameters self.Number_of_images = 0 self.dimension_option = dimension_selection self.slice = slice_number #Smoothing parameters self.fwhm = processing.sigma2fwhm(smoothing_sigma) self.gauss = gauss_sigma #Data parameters self.threshold = threshold #Data dimension options based on representation selection self.reshape_parm = (0, 0) if self.dimension_option == '2D': dim_1 = 176 dim_2 = 208 self.image_dimension = dim_1 * dim_2 self.dim = [dim_1, dim_2] elif self.dimension_option == '3D': dim_1 = 176 dim_2 = 208 dim_3 = 176 self.image_dimension = dim_1 * dim_2 * dim_3 self.dim = [dim_1, dim_2, dim_3] else: self.dimension_option = '2D' # set a default option dim_1 = 176 dim_2 = 208 self.image_dimension = dim_1 * dim_2 self.dim = [dim_1, dim_2]