Example #1
0
def test_get_template():
    """Test nimare.utils.get_template."""
    # 1mm template
    img = utils.get_template(space="mni152_1mm", mask=None)
    assert isinstance(img, nib.Nifti1Image)
    assert not nib.is_proxy(img.dataobj)
    img = utils.get_template(space="mni152_1mm", mask="brain")
    assert isinstance(img, nib.Nifti1Image)

    # 2mm template (default)
    img = utils.get_template(space="mni152_2mm", mask=None)
    assert isinstance(img, nib.Nifti1Image)
    img = utils.get_template(space="mni152_2mm", mask="brain")
    assert isinstance(img, nib.Nifti1Image)
    assert not nib.is_proxy(img.dataobj)

    # ALE template
    img = utils.get_template(space="ale_2mm", mask=None)
    assert isinstance(img, nib.Nifti1Image)
    img = utils.get_template(space="ale_2mm", mask="brain")
    assert isinstance(img, nib.Nifti1Image)
    assert not nib.is_proxy(img.dataobj)

    # Expect exceptions when incompatible spaces or masks are requested.
    with pytest.raises(ValueError):
        utils.get_template(space="something", mask=None)

    with pytest.raises(ValueError):
        utils.get_template(space="mni152_1mm", mask="gm")

    with pytest.raises(ValueError):
        utils.get_template(space="mni152_2mm", mask="gm")

    with pytest.raises(ValueError):
        utils.get_template(space="ale_2mm", mask="gm")
 def printInfo(self):
     print("Printing information for {0}".format(self.filename))
     obj = self.img.dataobj
     isArray = nib.is_proxy(obj)
     print("Proxy: {0}".format(str(isArray)))
     data = self.img.get_data()
     print("Shape:\n{0}".format(str(data.shape)))
     print("Array:\n{0}".format(data[:, :, 115]))
Example #3
0
def img_data_dtype(niimg):
    """Determine type of data contained in image

    Based on the information contained in ``niimg.dataobj``, determine the
    dtype of ``np.array(niimg.dataobj).dtype``.
    """

    dataobj = niimg.dataobj

    # Neuroimages that scale data should be interpreted as floating point
    if nibabel.is_proxy(dataobj) and (dataobj.slope, dataobj.inter) != (1.0, 0.0):
        return np.float_

    # ArrayProxy gained the dtype attribute in nibabel 2.2
    if hasattr(dataobj, 'dtype'):
        return dataobj.dtype

    return niimg.get_data_dtype()
Example #4
0
def img_data_dtype(niimg):
    """Determine type of data contained in image

    Based on the information contained in ``niimg.dataobj``, determine the
    dtype of ``np.array(niimg.dataobj).dtype``.
    """

    dataobj = niimg.dataobj

    # Neuroimages that scale data should be interpreted as floating point
    if nibabel.is_proxy(dataobj) and (dataobj.slope, dataobj.inter) != (1.0,
                                                                        0.0):
        return np.float_

    # ArrayProxy gained the dtype attribute in nibabel 2.2
    if hasattr(dataobj, 'dtype'):
        return dataobj.dtype

    return niimg.get_data_dtype()
Example #5
0
def check_img(img):
    """
    Very basic checker that loads `img`` and ensures it's 3D/int

    Parameters
    --------
    img : str or niimg-like
        Filepath to or in-memory loaded image

    Returns
    -------
    img : niimg-like
        Loaded 3D/int image
    """

    if isinstance(img, (str, os.PathLike)) and os.path.exists(img):
        img = nib.load(img)
    elif not isinstance(img, nib.spatialimages.SpatialImage):
        raise TypeError('Provided image must be an existing filepath or a '
                        'pre-loaded niimg-like object')

    # ensure 3D or squeezable to 3D
    img = nib.funcs.squeeze_image(img)
    if len(img.shape) != 3:
        raise ValueError('Provided image must be 3D')

    # check if atlas data is int or castable to int
    # if image is arrayproxy convert it to an array for speed-up
    data = np.asarray(img.dataobj)
    cast = nib.is_proxy(img.dataobj)
    if img.header.get_data_dtype().kind not in ['i', 'u']:
        idata = data.astype('int32')
        cast = np.allclose(idata, data)
        data = idata
        if not cast:
            raise ValueError('Provided image should have integer values or '
                             'be safely castable to int without data loss')
    if cast:
        img = img.__class__(data, img.affine, header=img.header)
        img.header.set_data_dtype(np.int32)

    return img
Example #6
0
def test_dataset_smoke():
    """Smoke test for nimare.dataset.Dataset initialization and get methods."""
    db_file = op.join(get_test_data_path(), "neurosynth_dset.json")
    dset = dataset.Dataset(db_file)
    dset.update_path(get_test_data_path())
    assert isinstance(dset, nimare.dataset.Dataset)
    # Test that Dataset.masker is portable
    assert not nib.is_proxy(dset.masker.mask_img_.dataobj)

    methods = [
        dset.get_images, dset.get_labels, dset.get_metadata, dset.get_texts
    ]
    for method in methods:
        assert isinstance(method(), list)
        assert isinstance(method(ids=dset.ids[:5]), list)
        assert isinstance(method(ids=dset.ids[0]), list)

    assert isinstance(dset.get_images(imtype="beta"), list)
    assert isinstance(dset.get_metadata(field="sample_sizes"), list)
    assert isinstance(dset.get_studies_by_label("cogat_cognitive_control"),
                      list)
    assert isinstance(dset.get_studies_by_coordinate(np.array([[20, 20, 20]])),
                      list)

    # If label is not available, raise ValueError
    with pytest.raises(ValueError):
        dset.get_studies_by_label("dog")

    mask_data = np.zeros(dset.masker.mask_img.shape, int)
    mask_data[40, 40, 40] = 1
    mask_img = nib.Nifti1Image(mask_data, dset.masker.mask_img.affine)
    assert isinstance(dset.get_studies_by_mask(mask_img), list)

    dset1 = dset.slice(dset.ids[:5])
    dset2 = dset.slice(dset.ids[5:])
    assert isinstance(dset1, dataset.Dataset)
    dset_merged = dset1.merge(dset2)
    assert isinstance(dset_merged, dataset.Dataset)
Example #7
0
img.affine

img.header
header = img.header
print(header)     

print(header.get_data_shape())

# Use: get_data_dtype() to get the numpy data type in which the image data is stored (or will be stored if you save the image):
print(header.get_data_dtype())

#Use: get_zooms() to get the voxel sizes in millimeters:
print(header.get_zooms())

img.dataobj
nib.is_proxy(img.dataobj)

array_data = np.arange(24, dtype=np.int16).reshape((2, 3, 4))
affine = np.diag([1, 2, 3, 1])
array_img = nib.Nifti1Image(array_data, affine)
array_img.dataobj
array_img.dataobj is array_data
nib.is_proxy(array_img.dataobj)

image_data = array_img.get_data()
image_data.shape
image_data is array_data
image_data = img.get_data()
image_data.shape
img.dataobj
data_again = img.get_data()
Example #8
0
cosa = np.cos(alpha)
sina = np.sin(alpha)
Trotate = np.array([[1, 0, 0, 0],
                    [0, cosa, -sina, 0],
                    [0, sina, cosa, 0],
                    [0, 0, 0, 1]])
Tsclrot = Tscale.dot(Trotate)
Ttranslate = np.array([[1, 0, 0, -78],
                       [0, 1, 0, -76],
                       [0, 0, 1, -64],
                       [0, 0, 0, 1]])
Twhole = Ttranslate.dot(Tsclrot)


# epi image proxy (i.e. points to epi image without loading it from disk yet):
nib.is_proxy(epi.dataobj)

# Creating a nifti image from an array using nibable:

mat = np.arange(24, dtype=np.int16).reshape((2, 3, 4))
affine = np.diag([1, 2, 3, 1])
newnifti = nib.Nifti1Image(mat, affine)
'''
Here the newnifti data is already a numpy array, 
and there is no version of the array on disk. 
The dataobj property of newnifti is the array itself 
rather than a proxy for the array:
'''
print(newnifti.dataobj)
print(newnifti.dataobj is mat)
print(nib.is_proxy(newnifti.dataobj))