Example #1
0
File: rs.py Project: NBCLab/niconn
def rs_firstlevel(unsmooth_fn, smooth_fn, roi_mask, output_dir, work_dir):

    import nipype.algorithms.modelgen as model  # model generation
    from niflow.nipype1.workflows.fmri.fsl import create_modelfit_workflow
    from nipype.interfaces import fsl as fsl
    from nipype.interfaces.base import Bunch

    meants = fsl.utils.ImageMeants()
    meants.inputs.in_file = unsmooth_fn
    meants.inputs.mask = roi_mask
    meants.inputs.out_file = op.join(
        work_dir, '{0}_{1}.txt'.format(
            op.basename(unsmooth_fn).split('.')[0],
            op.basename(roi_mask).split('.')[0]))
    meants.run()

    mask_fn = "_".join(op.basename(smooth_fn).split('.')[0].split('_')[:-1])
    meants.inputs.mask = op.join(op.dirname(smooth_fn),
                                 '{prefix}_mask.nii.gz'.format(prefix=mask_fn))
    meants.inputs.out_file = op.join(
        work_dir, '{0}_gsr.txt'.format(op.basename(unsmooth_fn).split('.')[0]))
    meants.run()

    roi_ts = np.atleast_2d(
        np.loadtxt(
            op.join(
                work_dir, '{0}_{1}.txt'.format(
                    op.basename(unsmooth_fn).split('.')[0],
                    op.basename(roi_mask).split('.')[0]))))
    gsr_ts = np.atleast_2d(
        np.loadtxt(
            op.join(
                work_dir,
                '{0}_gsr.txt'.format(op.basename(unsmooth_fn).split('.')[0]))))

    subject_info = Bunch(
        conditions=['mean'],
        onsets=[list(np.arange(0, 0.72 * len(roi_ts[0]), 0.72))],
        durations=[[0.72]],
        amplitudes=[np.ones(len(roi_ts[0]))],
        regressor_names=['roi', 'gsr'],
        regressors=[roi_ts[0], gsr_ts[0]])

    level1_workflow = pe.Workflow(name='level1flow')

    inputnode = pe.Node(
        interface=util.IdentityInterface(fields=['func', 'subjectinfo']),
        name='inputspec')

    modelspec = pe.Node(model.SpecifyModel(), name="modelspec")
    modelspec.inputs.input_units = 'secs'
    modelspec.inputs.time_repetition = 0.72
    modelspec.inputs.high_pass_filter_cutoff = 0

    modelfit = create_modelfit_workflow()
    modelfit.get_node('modelestimate').inputs.smooth_autocorr = False
    modelfit.get_node('modelestimate').inputs.autocorr_noestimate = True
    modelfit.get_node('modelestimate').inputs.mask_size = 0
    modelfit.inputs.inputspec.interscan_interval = 0.72
    modelfit.inputs.inputspec.bases = {'none': {'none': None}}
    modelfit.inputs.inputspec.model_serial_correlations = False
    modelfit.inputs.inputspec.film_threshold = 1000
    contrasts = [['corr', 'T', ['mean', 'roi', 'gsr'], [0, 1, 0]]]
    modelfit.inputs.inputspec.contrasts = contrasts
    """
    This node will write out image files in output directory
    """
    datasink = pe.Node(nio.DataSink(), name='sinker')
    datasink.inputs.base_directory = work_dir

    level1_workflow.connect([
        (inputnode, modelspec, [('func', 'functional_runs')]),
        (inputnode, modelspec, [('subjectinfo', 'subject_info')]),
        (modelspec, modelfit, [('session_info', 'inputspec.session_info')]),
        (inputnode, modelfit, [('func', 'inputspec.functional_data')]),
        (modelfit, datasink, [('outputspec.copes', 'copes'),
                              ('outputspec.varcopes', 'varcopes'),
                              ('outputspec.dof_file', 'dof_file'),
                              ('outputspec.zfiles', 'zfiles')])
    ])

    level1_workflow.inputs.inputspec.func = smooth_fn
    level1_workflow.inputs.inputspec.subjectinfo = subject_info
    level1_workflow.base_dir = work_dir

    level1_workflow.run()

    #copy data to directory
    shutil.rmtree(op.join(work_dir, 'level1flow'))
    files_to_copy = glob(op.join(work_dir, '*', '_modelestimate0', '*'))
    for tmp_fn in files_to_copy:
        shutil.copy(tmp_fn, output_dir)

    shutil.rmtree(work_dir)
                                               create_fixed_effects_flow)
"""
Preliminaries
-------------

Setup any package specific configuration. The output file format for FSL
routines is being set to compressed NIFTI.
"""

fsl.FSLCommand.set_default_output_type('NIFTI_GZ')

level1_workflow = pe.Workflow(name='level1flow')

preproc = create_featreg_preproc(whichvol='first')

modelfit = create_modelfit_workflow()

fixed_fx = create_fixed_effects_flow()
"""
Add artifact detection and model specification nodes between the preprocessing
and modelfitting workflows.
"""

art = pe.MapNode(
    ra.ArtifactDetect(use_differences=[True, False],
                      use_norm=True,
                      norm_threshold=1,
                      zintensity_threshold=3,
                      parameter_source='FSL',
                      mask_type='file'),
    iterfield=['realigned_files', 'realignment_parameters', 'mask_file'],
Example #3
0
modelspec.inputs.high_pass_filter_cutoff = 100
modelspec.inputs.subject_info = [
    Bunch(conditions=['Visual', 'Auditory'],
          onsets=[
              list(range(0, int(180 * TR), 60)),
              list(range(0, int(180 * TR), 90))
          ],
          durations=[[30], [45]],
          amplitudes=None,
          tmod=None,
          pmod=None,
          regressor_names=None,
          regressors=None)
]

modelfit = create_modelfit_workflow(f_contrasts=True)
modelfit.inputs.inputspec.interscan_interval = TR
modelfit.inputs.inputspec.model_serial_correlations = True
modelfit.inputs.inputspec.bases = {'dgamma': {'derivs': True}}
cont1 = ['Visual>Baseline', 'T', ['Visual', 'Auditory'], [1, 0]]
cont2 = ['Auditory>Baseline', 'T', ['Visual', 'Auditory'], [0, 1]]
cont3 = ['Task', 'F', [cont1, cont2]]
modelfit.inputs.inputspec.contrasts = [cont1, cont2, cont3]

registration = create_reg_workflow()
registration.inputs.inputspec.target_image = fsl.Info.standard_image(
    'MNI152_T1_2mm.nii.gz')
registration.inputs.inputspec.target_image_brain = fsl.Info.standard_image(
    'MNI152_T1_2mm_brain.nii.gz')
registration.inputs.inputspec.config_file = 'T1_2_MNI152_2mm'
"""
Example #4
0
def analyze_openfmri_dataset(data_dir,
                             subject=None,
                             model_id=None,
                             task_id=None,
                             output_dir=None,
                             subj_prefix='*',
                             hpcutoff=120.,
                             use_derivatives=True,
                             fwhm=6.0,
                             subjects_dir=None,
                             target=None):
    """Analyzes an open fmri dataset

    Parameters
    ----------

    data_dir : str
        Path to the base data directory

    work_dir : str
        Nipype working directory (defaults to cwd)
    """
    """
    Load nipype workflows
    """

    preproc = create_featreg_preproc(whichvol='first')
    modelfit = create_modelfit_workflow()
    fixed_fx = create_fixed_effects_flow()
    if subjects_dir:
        registration = create_fs_reg_workflow()
    else:
        registration = create_reg_workflow()
    """
    Remove the plotting connection so that plot iterables don't propagate
    to the model stage
    """

    preproc.disconnect(preproc.get_node('plot_motion'), 'out_file',
                       preproc.get_node('outputspec'), 'motion_plots')
    """
    Set up openfmri data specific components
    """

    subjects = sorted([
        path.split(os.path.sep)[-1]
        for path in glob(os.path.join(data_dir, subj_prefix))
    ])

    infosource = pe.Node(
        niu.IdentityInterface(fields=['subject_id', 'model_id', 'task_id']),
        name='infosource')
    if len(subject) == 0:
        infosource.iterables = [('subject_id', subjects),
                                ('model_id', [model_id]), ('task_id', task_id)]
    else:
        infosource.iterables = [
            ('subject_id',
             [subjects[subjects.index(subj)] for subj in subject]),
            ('model_id', [model_id]), ('task_id', task_id)
        ]

    subjinfo = pe.Node(niu.Function(
        input_names=['subject_id', 'base_dir', 'task_id', 'model_id'],
        output_names=['run_id', 'conds', 'TR'],
        function=get_subjectinfo),
                       name='subjectinfo')
    subjinfo.inputs.base_dir = data_dir
    """
    Return data components as anat, bold and behav
    """

    contrast_file = os.path.join(data_dir, 'models', 'model%03d' % model_id,
                                 'task_contrasts.txt')
    has_contrast = os.path.exists(contrast_file)
    if has_contrast:
        datasource = pe.Node(nio.DataGrabber(
            infields=['subject_id', 'run_id', 'task_id', 'model_id'],
            outfields=['anat', 'bold', 'behav', 'contrasts']),
                             name='datasource')
    else:
        datasource = pe.Node(nio.DataGrabber(
            infields=['subject_id', 'run_id', 'task_id', 'model_id'],
            outfields=['anat', 'bold', 'behav']),
                             name='datasource')
    datasource.inputs.base_directory = data_dir
    datasource.inputs.template = '*'

    if has_contrast:
        datasource.inputs.field_template = {
            'anat': '%s/anatomy/T1_001.nii.gz',
            'bold': '%s/BOLD/task%03d_r*/bold.nii.gz',
            'behav': ('%s/model/model%03d/onsets/task%03d_'
                      'run%03d/cond*.txt'),
            'contrasts': ('models/model%03d/'
                          'task_contrasts.txt')
        }
        datasource.inputs.template_args = {
            'anat': [['subject_id']],
            'bold': [['subject_id', 'task_id']],
            'behav': [['subject_id', 'model_id', 'task_id', 'run_id']],
            'contrasts': [['model_id']]
        }
    else:
        datasource.inputs.field_template = {
            'anat': '%s/anatomy/T1_001.nii.gz',
            'bold': '%s/BOLD/task%03d_r*/bold.nii.gz',
            'behav': ('%s/model/model%03d/onsets/task%03d_'
                      'run%03d/cond*.txt')
        }
        datasource.inputs.template_args = {
            'anat': [['subject_id']],
            'bold': [['subject_id', 'task_id']],
            'behav': [['subject_id', 'model_id', 'task_id', 'run_id']]
        }

    datasource.inputs.sort_filelist = True
    """
    Create meta workflow
    """

    wf = pe.Workflow(name='openfmri')
    wf.connect(infosource, 'subject_id', subjinfo, 'subject_id')
    wf.connect(infosource, 'model_id', subjinfo, 'model_id')
    wf.connect(infosource, 'task_id', subjinfo, 'task_id')
    wf.connect(infosource, 'subject_id', datasource, 'subject_id')
    wf.connect(infosource, 'model_id', datasource, 'model_id')
    wf.connect(infosource, 'task_id', datasource, 'task_id')
    wf.connect(subjinfo, 'run_id', datasource, 'run_id')
    wf.connect([
        (datasource, preproc, [('bold', 'inputspec.func')]),
    ])

    def get_highpass(TR, hpcutoff):
        return hpcutoff / (2. * TR)

    gethighpass = pe.Node(niu.Function(input_names=['TR', 'hpcutoff'],
                                       output_names=['highpass'],
                                       function=get_highpass),
                          name='gethighpass')
    wf.connect(subjinfo, 'TR', gethighpass, 'TR')
    wf.connect(gethighpass, 'highpass', preproc, 'inputspec.highpass')
    """
    Setup a basic set of contrasts, a t-test per condition
    """

    def get_contrasts(contrast_file, task_id, conds):
        import numpy as np
        import os
        contrast_def = []
        if os.path.exists(contrast_file):
            with open(contrast_file, 'rt') as fp:
                contrast_def.extend([
                    np.array(row.split()) for row in fp.readlines()
                    if row.strip()
                ])
        contrasts = []
        for row in contrast_def:
            if row[0] != 'task%03d' % task_id:
                continue
            con = [
                row[1], 'T', ['cond%03d' % (i + 1) for i in range(len(conds))],
                row[2:].astype(float).tolist()
            ]
            contrasts.append(con)
        # add auto contrasts for each column
        for i, cond in enumerate(conds):
            con = [cond, 'T', ['cond%03d' % (i + 1)], [1]]
            contrasts.append(con)
        return contrasts

    contrastgen = pe.Node(niu.Function(
        input_names=['contrast_file', 'task_id', 'conds'],
        output_names=['contrasts'],
        function=get_contrasts),
                          name='contrastgen')

    art = pe.MapNode(
        interface=ra.ArtifactDetect(use_differences=[True, False],
                                    use_norm=True,
                                    norm_threshold=1,
                                    zintensity_threshold=3,
                                    parameter_source='FSL',
                                    mask_type='file'),
        iterfield=['realigned_files', 'realignment_parameters', 'mask_file'],
        name="art")

    modelspec = pe.Node(interface=model.SpecifyModel(), name="modelspec")
    modelspec.inputs.input_units = 'secs'

    def check_behav_list(behav, run_id, conds):
        import numpy as np
        num_conds = len(conds)
        if isinstance(behav, (str, bytes)):
            behav = [behav]
        behav_array = np.array(behav).flatten()
        num_elements = behav_array.shape[0]
        return behav_array.reshape(int(num_elements / num_conds),
                                   num_conds).tolist()

    reshape_behav = pe.Node(niu.Function(
        input_names=['behav', 'run_id', 'conds'],
        output_names=['behav'],
        function=check_behav_list),
                            name='reshape_behav')

    wf.connect(subjinfo, 'TR', modelspec, 'time_repetition')
    wf.connect(datasource, 'behav', reshape_behav, 'behav')
    wf.connect(subjinfo, 'run_id', reshape_behav, 'run_id')
    wf.connect(subjinfo, 'conds', reshape_behav, 'conds')
    wf.connect(reshape_behav, 'behav', modelspec, 'event_files')

    wf.connect(subjinfo, 'TR', modelfit, 'inputspec.interscan_interval')
    wf.connect(subjinfo, 'conds', contrastgen, 'conds')
    if has_contrast:
        wf.connect(datasource, 'contrasts', contrastgen, 'contrast_file')
    else:
        contrastgen.inputs.contrast_file = ''
    wf.connect(infosource, 'task_id', contrastgen, 'task_id')
    wf.connect(contrastgen, 'contrasts', modelfit, 'inputspec.contrasts')

    wf.connect([(preproc, art,
                 [('outputspec.motion_parameters', 'realignment_parameters'),
                  ('outputspec.realigned_files', 'realigned_files'),
                  ('outputspec.mask', 'mask_file')]),
                (preproc, modelspec,
                 [('outputspec.highpassed_files', 'functional_runs'),
                  ('outputspec.motion_parameters', 'realignment_parameters')]),
                (art, modelspec, [('outlier_files', 'outlier_files')]),
                (modelspec, modelfit, [('session_info',
                                        'inputspec.session_info')]),
                (preproc, modelfit, [('outputspec.highpassed_files',
                                      'inputspec.functional_data')])])

    # Comute TSNR on realigned data regressing polynomials upto order 2
    tsnr = MapNode(TSNR(regress_poly=2), iterfield=['in_file'], name='tsnr')
    wf.connect(preproc, "outputspec.realigned_files", tsnr, "in_file")

    # Compute the median image across runs
    calc_median = Node(CalculateMedian(), name='median')
    wf.connect(tsnr, 'detrended_file', calc_median, 'in_files')
    """
    Reorder the copes so that now it combines across runs
    """

    def sort_copes(copes, varcopes, contrasts):
        import numpy as np
        if not isinstance(copes, list):
            copes = [copes]
            varcopes = [varcopes]
        num_copes = len(contrasts)
        n_runs = len(copes)
        all_copes = np.array(copes).flatten()
        all_varcopes = np.array(varcopes).flatten()
        outcopes = all_copes.reshape(int(len(all_copes) / num_copes),
                                     num_copes).T.tolist()
        outvarcopes = all_varcopes.reshape(int(len(all_varcopes) / num_copes),
                                           num_copes).T.tolist()
        return outcopes, outvarcopes, n_runs

    cope_sorter = pe.Node(niu.Function(
        input_names=['copes', 'varcopes', 'contrasts'],
        output_names=['copes', 'varcopes', 'n_runs'],
        function=sort_copes),
                          name='cope_sorter')

    pickfirst = lambda x: x[0]

    wf.connect(contrastgen, 'contrasts', cope_sorter, 'contrasts')
    wf.connect([(preproc, fixed_fx, [(('outputspec.mask', pickfirst),
                                      'flameo.mask_file')]),
                (modelfit, cope_sorter, [('outputspec.copes', 'copes')]),
                (modelfit, cope_sorter, [('outputspec.varcopes', 'varcopes')]),
                (cope_sorter, fixed_fx, [('copes', 'inputspec.copes'),
                                         ('varcopes', 'inputspec.varcopes'),
                                         ('n_runs', 'l2model.num_copes')]),
                (modelfit, fixed_fx, [
                    ('outputspec.dof_file', 'inputspec.dof_files'),
                ])])

    wf.connect(calc_median, 'median_file', registration,
               'inputspec.mean_image')
    if subjects_dir:
        wf.connect(infosource, 'subject_id', registration,
                   'inputspec.subject_id')
        registration.inputs.inputspec.subjects_dir = subjects_dir
        registration.inputs.inputspec.target_image = fsl.Info.standard_image(
            'MNI152_T1_2mm_brain.nii.gz')
        if target:
            registration.inputs.inputspec.target_image = target
    else:
        wf.connect(datasource, 'anat', registration,
                   'inputspec.anatomical_image')
        registration.inputs.inputspec.target_image = fsl.Info.standard_image(
            'MNI152_T1_2mm.nii.gz')
        registration.inputs.inputspec.target_image_brain = fsl.Info.standard_image(
            'MNI152_T1_2mm_brain.nii.gz')
        registration.inputs.inputspec.config_file = 'T1_2_MNI152_2mm'

    def merge_files(copes, varcopes, zstats):
        out_files = []
        splits = []
        out_files.extend(copes)
        splits.append(len(copes))
        out_files.extend(varcopes)
        splits.append(len(varcopes))
        out_files.extend(zstats)
        splits.append(len(zstats))
        return out_files, splits

    mergefunc = pe.Node(niu.Function(
        input_names=['copes', 'varcopes', 'zstats'],
        output_names=['out_files', 'splits'],
        function=merge_files),
                        name='merge_files')
    wf.connect([(fixed_fx.get_node('outputspec'), mergefunc, [
        ('copes', 'copes'),
        ('varcopes', 'varcopes'),
        ('zstats', 'zstats'),
    ])])
    wf.connect(mergefunc, 'out_files', registration, 'inputspec.source_files')

    def split_files(in_files, splits):
        copes = in_files[:splits[0]]
        varcopes = in_files[splits[0]:(splits[0] + splits[1])]
        zstats = in_files[(splits[0] + splits[1]):]
        return copes, varcopes, zstats

    splitfunc = pe.Node(niu.Function(
        input_names=['in_files', 'splits'],
        output_names=['copes', 'varcopes', 'zstats'],
        function=split_files),
                        name='split_files')
    wf.connect(mergefunc, 'splits', splitfunc, 'splits')
    wf.connect(registration, 'outputspec.transformed_files', splitfunc,
               'in_files')

    if subjects_dir:
        get_roi_mean = pe.MapNode(fs.SegStats(default_color_table=True),
                                  iterfield=['in_file'],
                                  name='get_aparc_means')
        get_roi_mean.inputs.avgwf_txt_file = True
        wf.connect(fixed_fx.get_node('outputspec'), 'copes', get_roi_mean,
                   'in_file')
        wf.connect(registration, 'outputspec.aparc', get_roi_mean,
                   'segmentation_file')

        get_roi_tsnr = pe.MapNode(fs.SegStats(default_color_table=True),
                                  iterfield=['in_file'],
                                  name='get_aparc_tsnr')
        get_roi_tsnr.inputs.avgwf_txt_file = True
        wf.connect(tsnr, 'tsnr_file', get_roi_tsnr, 'in_file')
        wf.connect(registration, 'outputspec.aparc', get_roi_tsnr,
                   'segmentation_file')
    """
    Connect to a datasink
    """

    def get_subs(subject_id, conds, run_id, model_id, task_id):
        subs = [('_subject_id_%s_' % subject_id, '')]
        subs.append(('_model_id_%d' % model_id, 'model%03d' % model_id))
        subs.append(('task_id_%d/' % task_id, '/task%03d_' % task_id))
        subs.append(
            ('bold_dtype_mcf_mask_smooth_mask_gms_tempfilt_mean_warp', 'mean'))
        subs.append(('bold_dtype_mcf_mask_smooth_mask_gms_tempfilt_mean_flirt',
                     'affine'))

        for i in range(len(conds)):
            subs.append(('_flameo%d/cope1.' % i, 'cope%02d.' % (i + 1)))
            subs.append(('_flameo%d/varcope1.' % i, 'varcope%02d.' % (i + 1)))
            subs.append(('_flameo%d/zstat1.' % i, 'zstat%02d.' % (i + 1)))
            subs.append(('_flameo%d/tstat1.' % i, 'tstat%02d.' % (i + 1)))
            subs.append(('_flameo%d/res4d.' % i, 'res4d%02d.' % (i + 1)))
            subs.append(('_warpall%d/cope1_warp.' % i, 'cope%02d.' % (i + 1)))
            subs.append(('_warpall%d/varcope1_warp.' % (len(conds) + i),
                         'varcope%02d.' % (i + 1)))
            subs.append(('_warpall%d/zstat1_warp.' % (2 * len(conds) + i),
                         'zstat%02d.' % (i + 1)))
            subs.append(('_warpall%d/cope1_trans.' % i, 'cope%02d.' % (i + 1)))
            subs.append(('_warpall%d/varcope1_trans.' % (len(conds) + i),
                         'varcope%02d.' % (i + 1)))
            subs.append(('_warpall%d/zstat1_trans.' % (2 * len(conds) + i),
                         'zstat%02d.' % (i + 1)))
            subs.append(('__get_aparc_means%d/' % i, '/cope%02d_' % (i + 1)))

        for i, run_num in enumerate(run_id):
            subs.append(('__get_aparc_tsnr%d/' % i, '/run%02d_' % run_num))
            subs.append(('__art%d/' % i, '/run%02d_' % run_num))
            subs.append(('__dilatemask%d/' % i, '/run%02d_' % run_num))
            subs.append(('__realign%d/' % i, '/run%02d_' % run_num))
            subs.append(('__modelgen%d/' % i, '/run%02d_' % run_num))
        subs.append(('/model%03d/task%03d/' % (model_id, task_id), '/'))
        subs.append(('/model%03d/task%03d_' % (model_id, task_id), '/'))
        subs.append(('_bold_dtype_mcf_bet_thresh_dil', '_mask'))
        subs.append(('_output_warped_image', '_anat2target'))
        subs.append(('median_flirt_brain_mask', 'median_brain_mask'))
        subs.append(('median_bbreg_brain_mask', 'median_brain_mask'))
        return subs

    subsgen = pe.Node(niu.Function(
        input_names=['subject_id', 'conds', 'run_id', 'model_id', 'task_id'],
        output_names=['substitutions'],
        function=get_subs),
                      name='subsgen')
    wf.connect(subjinfo, 'run_id', subsgen, 'run_id')

    datasink = pe.Node(interface=nio.DataSink(), name="datasink")
    wf.connect(infosource, 'subject_id', datasink, 'container')
    wf.connect(infosource, 'subject_id', subsgen, 'subject_id')
    wf.connect(infosource, 'model_id', subsgen, 'model_id')
    wf.connect(infosource, 'task_id', subsgen, 'task_id')
    wf.connect(contrastgen, 'contrasts', subsgen, 'conds')
    wf.connect(subsgen, 'substitutions', datasink, 'substitutions')
    wf.connect([(fixed_fx.get_node('outputspec'), datasink,
                 [('res4d', 'res4d'), ('copes', 'copes'),
                  ('varcopes', 'varcopes'), ('zstats', 'zstats'),
                  ('tstats', 'tstats')])])
    wf.connect([(modelfit.get_node('modelgen'), datasink, [
        ('design_cov', 'qa.model'),
        ('design_image', 'qa.model.@matrix_image'),
        ('design_file', 'qa.model.@matrix'),
    ])])
    wf.connect([(preproc, datasink,
                 [('outputspec.motion_parameters', 'qa.motion'),
                  ('outputspec.motion_plots', 'qa.motion.plots'),
                  ('outputspec.mask', 'qa.mask')])])
    wf.connect(registration, 'outputspec.mean2anat_mask', datasink,
               'qa.mask.mean2anat')
    wf.connect(art, 'norm_files', datasink, 'qa.art.@norm')
    wf.connect(art, 'intensity_files', datasink, 'qa.art.@intensity')
    wf.connect(art, 'outlier_files', datasink, 'qa.art.@outlier_files')
    wf.connect(registration, 'outputspec.anat2target', datasink,
               'qa.anat2target')
    wf.connect(tsnr, 'tsnr_file', datasink, 'qa.tsnr.@map')
    if subjects_dir:
        wf.connect(registration, 'outputspec.min_cost_file', datasink,
                   'qa.mincost')
        wf.connect([(get_roi_tsnr, datasink, [('avgwf_txt_file', 'qa.tsnr'),
                                              ('summary_file',
                                               'qa.tsnr.@summary')])])
        wf.connect([(get_roi_mean, datasink, [('avgwf_txt_file', 'copes.roi'),
                                              ('summary_file',
                                               'copes.roi.@summary')])])
    wf.connect([(splitfunc, datasink, [
        ('copes', 'copes.mni'),
        ('varcopes', 'varcopes.mni'),
        ('zstats', 'zstats.mni'),
    ])])
    wf.connect(calc_median, 'median_file', datasink, 'mean')
    wf.connect(registration, 'outputspec.transformed_mean', datasink,
               'mean.mni')
    wf.connect(registration, 'outputspec.func2anat_transform', datasink,
               'xfm.mean2anat')
    wf.connect(registration, 'outputspec.anat2target_transform', datasink,
               'xfm.anat2target')
    """
    Set processing parameters
    """

    preproc.inputs.inputspec.fwhm = fwhm
    gethighpass.inputs.hpcutoff = hpcutoff
    modelspec.inputs.high_pass_filter_cutoff = hpcutoff
    modelfit.inputs.inputspec.bases = {'dgamma': {'derivs': use_derivatives}}
    modelfit.inputs.inputspec.model_serial_correlations = True
    modelfit.inputs.inputspec.film_threshold = 1000

    datasink.inputs.base_directory = output_dir
    return wf