def __init__(self,
              reader,
              window_sizes,
              batch_size=10,
              n_interpolations=10,
              queue_length=10,
              name='linear_interpolation_sampler'):
     ImageWindowDataset.__init__(self,
                                 reader,
                                 window_sizes=window_sizes,
                                 batch_size=batch_size,
                                 queue_length=queue_length,
                                 shuffle=False,
                                 epoch=1,
                                 smaller_final_batch_mode='drop',
                                 name=name)
     self.n_interpolations = n_interpolations
     # only try to use the first spatial shape available
     image_spatial_shape = list(self.reader.shapes.values())[0][:3]
     self.window.set_spatial_shape(image_spatial_shape)
     tf.logging.info("initialised linear interpolation sampler %s ",
                     self.window.shapes)
     assert not self.window.has_dynamic_shapes, \
         "dynamic shapes not supported, please specify " \
         "spatial_window_size = (1, 1, 1)"
Example #2
0
    def __init__(self,
                 reader,
                 window_sizes,
                 batch_size=1,
                 spatial_window_size=None,
                 window_border=None,
                 queue_length=10,
                 smaller_final_batch_mode='pad',
                 name='grid_sampler'):

        # override all spatial window defined in input
        # modalities sections
        # this is useful when do inference with a spatial window
        # which is different from the training specifications
        ImageWindowDataset.__init__(
            self,
            reader=reader,
            window_sizes=spatial_window_size or window_sizes,
            batch_size=batch_size,
            windows_per_image=1,
            queue_length=queue_length,
            shuffle=False,
            epoch=1,
            smaller_final_batch_mode=smaller_final_batch_mode,
            name=name)

        self.border_size = window_border or (0, 0, 0)
        assert isinstance(self.border_size, (list, tuple)), \
            "window_border should be a list or tuple"
        while len(self.border_size) < N_SPATIAL:
            self.border_size = tuple(self.border_size) + \
                               (self.border_size[-1],)
        self.border_size = self.border_size[:N_SPATIAL]
        tf.logging.info('initialised window instance')
        tf.logging.info("initialised grid sampler %s", self.window.shapes)
Example #3
0
    def __init__(self,
                 names=('vector', ),
                 vector_size=(100, ),
                 batch_size=10,
                 n_interpolations=10,
                 mean=0.0,
                 stddev=1.0,
                 repeat=1,
                 queue_length=10,
                 name='random_vector_sampler'):
        # repeat=None for infinite loops
        self.n_interpolations = max(n_interpolations, 1)
        self.mean = mean
        self.stddev = stddev
        self.repeat = repeat
        self.names = names

        ImageWindowDataset.__init__(
            self,
            reader=None,
            window_sizes={names[0]: {
                              'spatial_window_size': vector_size
                          }},
            batch_size=batch_size,
            queue_length=queue_length,
            shuffle=False,
            epoch=1,
            smaller_final_batch_mode='drop',
            name=name)
        self.window = ImageWindow(shapes={names[0]: vector_size},
                                  dtypes={names[0]: tf.float32})
        tf.logging.info("initialised sampler output %s ", self.window.shapes)
 def __init__(self,
              reader,
              window_sizes,
              batch_size=1,
              spatial_window_size=None,
              windows_per_image=1,
              shuffle=True,
              queue_length=10,
              smaller_final_batch_mode='pad',
              name='resize_sampler_v2'):
     tf.logging.info('reading size of preprocessed images')
     ImageWindowDataset.__init__(
         self,
         reader=reader,
         window_sizes=window_sizes,
         batch_size=batch_size,
         windows_per_image=windows_per_image,
         queue_length=queue_length,
         shuffle=shuffle,
         epoch=-1 if shuffle else 1,
         smaller_final_batch_mode=smaller_final_batch_mode,
         name=name)
     if spatial_window_size:
         # override all spatial window defined in input
         # modalities sections
         # this is useful when do inference with a spatial window
         # which is different from the training specifications
         self.window.set_spatial_shape(spatial_window_size)
     tf.logging.info("initialised resize sampler %s ", self.window.shapes)
Example #5
0
 def __init__(self,
              reader,
              csv_reader=None,
              window_sizes=None,
              batch_size=10,
              windows_per_image=1,
              shuffle=True,
              queue_length=10,
              num_threads=4,
              epoch=-1,
              smaller_final_batch_mode='pad',
              name='random_vector_sampler'):
     self.csv_reader = csv_reader
     print("assigned csv_reader")
     ImageWindowDataset.__init__(
         self,
         reader=reader,
         window_sizes=window_sizes,
         batch_size=batch_size,
         windows_per_image=windows_per_image,
         shuffle=shuffle,
         queue_length=queue_length,
         epoch=epoch,
         smaller_final_batch_mode=smaller_final_batch_mode,
         name=name)
     print("initialised IWD")
     self.set_num_threads(num_threads)
Example #6
0
    def __init__(self,
                 reader,
                 window_sizes,
                 batch_size=1,
                 windows_per_image=1,
                 queue_length=10,
                 name='uniform_sampler_v2'):
        ImageWindowDataset.__init__(self,
                                    reader=reader,
                                    window_sizes=window_sizes,
                                    batch_size=batch_size,
                                    windows_per_image=windows_per_image,
                                    queue_length=queue_length,
                                    shuffle=True,
                                    epoch=-1,
                                    smaller_final_batch_mode='drop',
                                    name=name)

        tf.logging.info("initialised uniform sampler %s ", self.window.shapes)
        self.window_centers_sampler = rand_spatial_coordinates
Example #7
0
 def __init__(self,
              reader,
              csv_reader=None,
              window_sizes=None,
              batch_size=10,
              windows_per_image=1,
              shuffle=True,
              queue_length=10,
              epoch=-1,
              smaller_final_batch_mode='pad',
              name='random_vector_sampler'):
     self.csv_reader = csv_reader
     ImageWindowDataset.__init__(
         self,
         reader=reader,
         window_sizes=window_sizes,
         batch_size=batch_size,
         windows_per_image=windows_per_image,
         shuffle=shuffle,
         queue_length=queue_length,
         epoch=epoch,
         smaller_final_batch_mode=smaller_final_batch_mode,
         name=name)
 def __init__(self, *args, **kwargs):
     ImageWindowDataset.__init__(self, *args, **kwargs)