Example #1
0
def full_brain_info(stat_map,
                    mesh=None,
                    threshold=None,
                    cmap=plotting.cm.cold_hot):
    info = {}
    if mesh is None:
        mesh = datasets.fetch_surf_fsaverage5()
        # mesh = load_fsaverage()
    surf_maps = [
        surface.vol_to_surf(stat_map, mesh['pial_{}'.format(h)])
        for h in ['left', 'right']
    ]
    colors, cmax, cmap, norm, at = colorscale(cmap,
                                              np.asarray(surf_maps).ravel(),
                                              threshold)

    for hemi, surf_map in zip(['left', 'right'], surf_maps):
        pial = mesh['pial_{}'.format(hemi)]
        sulc_depth_map = surface.load_surf_data(mesh['sulc_{}'.format(hemi)])
        sulc_depth_map -= sulc_depth_map.min()
        sulc_depth_map /= sulc_depth_map.max()
        info['pial_{}'.format(hemi)] = to_plotly(pial)
        info['inflated_{}'.format(hemi)] = to_plotly(
            mesh['infl_{}'.format(hemi)])
        vertexcolor = cmap(norm(surf_map).data)
        if threshold is not None:
            anat_color = cm.get_cmap('Greys')(sulc_depth_map)
            vertexcolor[np.abs(surf_map) < at] = anat_color[
                np.abs(surf_map) < at]
        vertexcolor = np.asarray(vertexcolor * 255, dtype='uint8')
        info['vertexcolor_{}'.format(hemi)] = [
            '#{:02x}{:02x}{:02x}'.format(*row) for row in vertexcolor
        ]
    info["cmin"], info["cmax"] = -cmax, cmax
    return info, colors
Example #2
0
def test_vol_to_surf():
    # test 3d niimg to cortical surface projection and invariance to a change
    # of affine
    mni = datasets.load_mni152_template()
    mesh = _generate_surf()
    _check_vol_to_surf_results(mni, mesh)
    fsaverage = datasets.fetch_surf_fsaverage5().pial_left
    _check_vol_to_surf_results(mni, fsaverage)
def draw_community_fsaverage():

    fsaverage = datasets.fetch_surf_fsaverage5()
    template = load_img(
        '/home/carlo/workspace/communityalg/data/template_638.nii')
    memb = np.loadtxt('Memb1.txt')
    plot_parcellation(template,
                      fsaverage['infl_left'],
                      memb,
                      bg_data=None,
                      output_file='surf_inflated.png')
Example #4
0
def plot_4d_image(img, names=None, output_dir=None,
                  colors=None,
                  view_types=['stat_map'],
                  threshold=True,
                  n_jobs=1, verbose=10):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    if colors is None:
        colors = repeat(None)

    if 'surf_stat_map_right' in view_types or 'surf_stat_map_left' in view_types:
        fetch_surf_fsaverage5()
    filename = img
    img = check_niimg(img, ensure_ndim=4)
    img.get_data()
    if names is None or isinstance(names, str):
        if names is None:
            dirname, filename = os.path.split(filename)
            names = filename.replace('.nii.gz', '')
        names = numbered_names(names)
    else:
        assert len(names) == img.get_shape()[3]

    mask = fetch_mask()
    masker = NiftiMasker(mask_img=mask).fit()
    components = masker.transform(img)
    n_components = len(components)
    threshold = np.percentile(np.abs(components),
                              100. * (1 - 1. / n_components)) if threshold else 0

    imgs = Parallel(n_jobs=n_jobs, verbose=verbose)(
        delayed(plot_single)(img, name, output_dir, view_types, color,
                             threshold=threshold)
        for name, img, color in zip(names, iter_img(img), colors))
    return imgs
Example #5
0
    avg /= n_images
    return avg


def get_collection_counts(img_fnames):
    counts = dict()
    for ii, image in enumerate(img_fnames):
        collection, name = image.split('/')[-2:]
        counts[collection] = counts.get(collection, 0) + 1
    return counts


# counts = get_collection_counts(images)

target_img = nib.load(images[0])
desc = 'Average maps for %s' % search_term
avg_effect = average_maps(images_effect, target_img, desc)
desc = 'Average other maps'
avg_other = average_maps(images_other, target_img, desc)

contrast_img = nib.Nifti1Image(avg_effect - avg_other, target_img.affine)
avg_img = nib.Nifti1Image(avg_effect, target_img.affine)
fig = plot_glass_brain(contrast_img, plot_abs=False)
fig.savefig('figures/encoder_%s.png' % search_term)

# surface
fsaverage = datasets.fetch_surf_fsaverage5()
texture = surface.vol_to_surf(contrast_img, fsaverage.pial_right)
plot_surf_stat_map(fsaverage.infl_right, texture, symmetric_cbar=True)
plt.show()