def benchmark(): check = True shape = (40, 41, 42, 150) affine = np.eye(4) data = np.ndarray(shape, order="F", dtype=np.float32) with profile.timestamp("Data_generation"): data[...] = np.random.standard_normal(data.shape) target_shape = tuple([s * 1.26 for s in shape[:3]]) target_affine = affine img = nibabel.Nifti1Image(data, affine) # Resample one 4D image if check: print("Resampling (original)...") data_orig = utils.timeit(profile(nilearn.resampling_orig.resample_img) )(img, target_shape=target_shape, target_affine=target_affine, interpolation="continuous") print("Resampling (new)...") data = utils.timeit(profile(nilearn.resampling.resample_img) )(img, target_shape=target_shape, target_affine=target_affine, interpolation="continuous") time.sleep(0.5) del img time.sleep(0.5) if check: np.testing.assert_almost_equal(data_orig.get_data(), data.get_data()) del data time.sleep(0.5)
def benchmark(): # Concatenate all individual images, time the operation _, _, images = get_filenames() if utils.cache_tools_available: print("Invalidating cache...") utils.dontneed(images) print("Concatenating images...") data = utils.timeit(profile(nilearn.utils.concat_niimgs))(images) assert(data.shape[3] == len(images)) del data print("Concatenating images...") data = utils.timeit(profile(nilearn.utils.concat_niimgs))(images) assert(data.shape[3] == len(images)) del data