Example #1
0
    def test_ports(self):
        # Signature: name
                # Return an iterator over all the port (Event & Analog) in the
                # component
        # from nineml.abstraction.component.componentqueryer import
        # ComponentClassQueryer

        c = Dynamics(
            name='Comp1',
            regimes=[
                Regime(name='r1',
                       transitions=[
                           On('spikeinput1', do=[]),
                           On('spikeinput2', do=OutputEvent('ev_port2'),
                              to='r2')]),

                Regime(name='r2',
                       transitions=[
                           On('V > a', do=OutputEvent('ev_port2')),
                           On('spikeinput3', do=OutputEvent('ev_port3'),
                              to='r1')])
            ],
            aliases=['A1:=0', 'C:=0'],
            analog_ports=[AnalogSendPort('A1'), AnalogReceivePort('B'),
                          AnalogSendPort('C')]
        )

        ports = list(list(c.ports))
        port_names = [p.name for p in ports]

        self.assertEquals(len(port_names), 8)
        self.assertEquals(set(port_names),
                          set(['A1', 'B', 'C', 'spikeinput1', 'spikeinput2',
                               'spikeinput3', 'ev_port2', 'ev_port3'])
                          )
Example #2
0
 def test_output_filtering(self):
     """
     Tests whether the 'outputs' argument is able to filter (presumably)
     unconnected nonlinear mappings from inputs and states to analog send
     ports
     """
     e = Dynamics(name='E',
                  regimes=[
                      Regime('dSV1/dt = -SV1 / P1',
                             'dSV2/dt = -SV2 / P1 + ARP1 * P2',
                             name='R1')
                  ],
                  aliases=['A1:=SV1 * C1', 'A2:=SV1 * SV2'],
                  analog_ports=[
                      AnalogReceivePort('ARP1', dimension=un.per_time),
                      AnalogSendPort('A1', dimension=un.current),
                      AnalogSendPort('A2', dimension=un.dimensionless)
                  ],
                  parameters=[
                      Parameter('P1', dimension=un.time),
                      Parameter('P2', dimension=un.dimensionless)
                  ],
                  constants=[Constant('C1', 10, units=un.mA)])
     self.assertFalse(e.is_linear())
     self.assertTrue(e.is_linear(outputs=['A1']))
Example #3
0
 def test_nonlinear_state_assignment_in_onevent(self):
     """Test that nonlinear state assignements in on events"""
     g = Dynamics(name='G',
                  regimes=[
                      Regime('dSV1/dt = -SV1 / P1',
                             'dSV2/dt = -SV2 / P1 + ARP1 * P2',
                             name='R1',
                             transitions=[
                                 OnEvent('ERP1',
                                         state_assignments=[
                                             StateAssignment(
                                                 'SV2', 'SV2 + A2')
                                         ])
                             ])
                  ],
                  aliases=['A1:=SV1 * C1', 'A2:=P3 * P4 / ADP1'],
                  analog_ports=[
                      AnalogReceivePort('ARP1', dimension=un.per_time),
                      AnalogReducePort('ADP1',
                                       operator='+',
                                       dimension=un.dimensionless),
                      AnalogSendPort('A1', dimension=un.current),
                      AnalogSendPort('A2', dimension=un.dimensionless)
                  ],
                  event_ports=[EventReceivePort('ERP1')],
                  parameters=[
                      Parameter('P1', dimension=un.time),
                      Parameter('P2', dimension=un.dimensionless),
                      Parameter('P3', dimension=un.resistance),
                      Parameter('P4', dimension=un.conductance)
                  ],
                  constants=[Constant('C1', 10, units=un.nA)])
     self.assertFalse(g.is_linear())
Example #4
0
    def duplicate_port_name_event_analog(self):

        # Check different names are OK:
        Dynamics(
            name='C1', aliases=['A1:=1'],
            event_ports=[EventReceivePort('A')],
            analog_ports=[AnalogSendPort('A')])

        self.assertRaises(
            NineMLUsageError,
            Dynamics,
            name='C1',
            aliases=['A1:=1'],
            event_ports=[EventReceivePort('A')],
            analog_ports=[AnalogSendPort('A')]
        )
Example #5
0
    def test_all_expressions(self):
        a = Dynamics(
            name='A',
            aliases=['A1:=P1 * SV2', 'A2 := ARP1 + SV2', 'A3 := SV1'],
            state_variables=[
                StateVariable('SV1', dimension=un.voltage),
                StateVariable('SV2', dimension=un.current)],
            regimes=[
                Regime(
                    'dSV1/dt = -SV1 / P2',
                    'dSV2/dt = A3 / ARP2 + SV2 / P2',
                    transitions=[On('SV1 > P3', do=[OutputEvent('emit')]),
                                 On('spikein', do=[OutputEvent('emit')])],
                    name='R1'
                ),
                Regime(name='R2', transitions=On('(SV1 > C1) & (SV2 < P4)',
                                                 to='R1'))
            ],
            analog_ports=[AnalogReceivePort('ARP1', dimension=un.current),
                          AnalogReceivePort('ARP2',
                                            dimension=(un.resistance *
                                                       un.time)),
                          AnalogSendPort('A1',
                                         dimension=un.voltage * un.current),
                          AnalogSendPort('A2', dimension=un.current)],
            parameters=[Parameter('P1', dimension=un.voltage),
                        Parameter('P2', dimension=un.time),
                        Parameter('P3', dimension=un.voltage),
                        Parameter('P4', dimension=un.current)],
            constants=[Constant('C1', value=1.0, units=un.mV)]
        )

        self.assertEqual(
            set(a.all_expressions), set((
                sympify('P1 * SV2'), sympify('ARP1 + SV2'), sympify('SV1'),
                sympify('-SV1 / P2'), sympify('-SV1 / P2'),
                sympify('A3 / ARP2 + SV2 / P2'), sympify('SV1 > P3'),
                sympify('(SV1 > C1) & (SV2 < P4)'))),
            "All expressions were not extracted from component class")
Example #6
0
    def setUp(self):

        self.a = Dynamics(name='A',
                          aliases=['A1:=P1', 'A2 := ARP1 + SV2', 'A3 := SV1'],
                          regimes=[
                              Regime(
                                  'dSV1/dt = -SV1 / (P2*t)',
                                  'dSV2/dt = SV1 / (ARP1*t) + SV2 / (P1*t)',
                                  transitions=[
                                      On('SV1 > P1', do=[OutputEvent('emit')]),
                                      On('spikein', do=[OutputEvent('emit')])
                                  ],
                                  name='R1',
                              ),
                              Regime(name='R2',
                                     transitions=On('SV1 > 1', to='R1'))
                          ],
                          analog_ports=[
                              AnalogReceivePort('ARP1'),
                              AnalogReceivePort('ARP2'),
                              AnalogSendPort('A1'),
                              AnalogSendPort('A2')
                          ],
                          parameters=['P1', 'P2'])

        self.b = Dynamics(name='B',
                          aliases=[
                              'A1:=P1', 'A2 := ARP1 + SV2', 'A3 := SV1',
                              'A4 := SV1^3 + SV2^3'
                          ],
                          regimes=[
                              Regime(
                                  'dSV1/dt = -SV1 / (P2*t)',
                                  'dSV2/dt = SV1 / (ARP1*t) + SV2 / (P1*t)',
                                  'dSV3/dt = -SV3/t + P3/t',
                                  transitions=[
                                      On('SV1 > P1', do=[OutputEvent('emit')]),
                                      On('spikein',
                                         do=[
                                             OutputEvent('emit'),
                                             StateAssignment('SV1', 'P1')
                                         ])
                                  ],
                                  name='R1',
                              ),
                              Regime(name='R2',
                                     transitions=[
                                         On('SV1 > 1', to='R1'),
                                         On('SV3 < 0.001',
                                            to='R2',
                                            do=[StateAssignment('SV3', 1)])
                                     ])
                          ],
                          analog_ports=[
                              AnalogReceivePort('ARP1'),
                              AnalogReceivePort('ARP2'),
                              AnalogSendPort('A1'),
                              AnalogSendPort('A2'),
                              AnalogSendPort('A3'),
                              AnalogSendPort('SV3')
                          ],
                          parameters=['P1', 'P2', 'P3'])

        self.a_props = DynamicsProperties(name="AProps",
                                          definition=self.a,
                                          properties={
                                              'P1': 1,
                                              'P2': 2
                                          })
        self.b_props = DynamicsProperties(name="BProps",
                                          definition=self.b,
                                          properties={
                                              'P1': 1,
                                              'P2': 2,
                                              'P3': 3
                                          })
Example #7
0
    def test_basic_flattening(self):

        c = Dynamics(name='C',
                     aliases=['C1:=cp1', 'C2 := cIn1', 'C3 := SV1'],
                     regimes=[
                         Regime(
                             'dSV1/dt = -SV1/(cp2*t)',
                             transitions=[
                                 On('SV1>cp1', do=[OutputEvent('emit')]),
                                 On('spikein',
                                    do=[
                                        OutputEvent('emit'),
                                        StateAssignment('SV1', '10')
                                    ])
                             ],
                             name='r1',
                         ),
                         Regime(name='r2', transitions=On('SV1>1', to='r1'))
                     ],
                     analog_ports=[
                         AnalogReceivePort('cIn1'),
                         AnalogReceivePort('cIn2'),
                         AnalogSendPort('C1'),
                         AnalogSendPort('C2')
                     ],
                     parameters=['cp1', 'cp2'])

        d = Dynamics(name='D',
                     aliases=['D1:=dp1', 'D2 := dIn1', 'D3 := SV1'],
                     regimes=[
                         Regime(
                             'dSV1/dt = -SV1/(dp2*t)',
                             transitions=[
                                 On('SV1>dp1', do=[OutputEvent('emit')]),
                                 On('spikein', do=[OutputEvent('emit')])
                             ],
                             name='r1',
                         ),
                         Regime(name='r2', transitions=On('SV1>1', to='r1'))
                     ],
                     analog_ports=[
                         AnalogReceivePort('dIn1'),
                         AnalogReceivePort('dIn2'),
                         AnalogSendPort('D1'),
                         AnalogSendPort('D2')
                     ],
                     parameters=['dp1', 'dp2'])

        e = MultiDynamics(name='E',
                          sub_components={
                              'a': c,
                              'b': d
                          },
                          port_connections=[('a', 'C1', 'b', 'dIn1'),
                                            ('a', 'C2', 'b', 'dIn2')],
                          port_exposures=[('a', 'cIn1', 'ARP1'),
                                          ('a', 'cIn2', 'ARP2'),
                                          ('a', 'spikein', 'ERP1'),
                                          ('a', 'emit', 'ESP1')])

        # =====================================================================
        # General properties
        # =====================================================================
        self.assertEqual(e.name, 'E')
        self.assertEqual(set(e.parameter_names),
                         set(['cp1__a', 'cp2__a', 'dp1__b', 'dp2__b']))
        cp1 = e.parameter('cp1__a')
        self.assertEqual(cp1.dimension, un.dimensionless)
        self.assertEqual(set(e.analog_receive_port_names),
                         set(['ARP1', 'ARP2']))
        arp1 = e.analog_receive_port('ARP1')
        self.assertEqual(arp1.dimension, un.dimensionless)
        self.assertEqual(set(e.event_receive_port_names), set(['ERP1']))
        self.assertEqual(set(e.event_send_port_names), set(['ESP1']))
        self.assertEqual(
            set(e.alias_names),
            set([
                'C1__a', 'C2__a', 'C3__a', 'D1__b', 'D2__b', 'D3__b',
                'cIn1__a', 'cIn2__a', 'dIn1__b', 'dIn2__b'
            ]))
        self.assertEqual(e.alias('C1__a').rhs, sympy.sympify('cp1__a'))
        self.assertIsInstance(e.alias('cIn1__a'), _ReceivePortExposureAlias)
        self.assertIsInstance(e.alias('dIn1__b'),
                              _LocalAnalogReceivePortConnection)
        self.assertEqual(set(e.state_variable_names), set(['SV1__a',
                                                           'SV1__b']))
        self.assertEqual(
            e.state_variable('SV1__a').dimension, un.dimensionless)
        # - Regimes and Transitions:
        self.assertEqual(set(e.regime_names),
                         set(['r1___r1', 'r1___r2', 'r2___r1', 'r2___r2']))
        # =====================================================================
        # Regime a=1, b=2
        # =====================================================================
        r11 = e.regime('r1___r1')
        self.assertEqual(r11.num_on_conditions, 2)
        self.assertEqual(r11.num_on_events, 1)
        oe1 = r11.on_event('ERP1')
        self.assertEqual(oe1.num_output_events, 1)
        out1 = oe1.output_event('ESP1')
        self.assertEqual(out1.port, e.event_send_port('ESP1'))
        self.assertEqual(oe1.num_state_assignments, 1)
        self.assertEqual(oe1.state_assignment('SV1__a').rhs, 10)
        self.assertEqual(set(oe1.state_assignment_variables), set(
            ('SV1__a', )))
        self.assertEqual(r11.num_on_conditions, 2)
        oc1 = r11.on_condition('SV1__a > cp1__a')
        self.assertEqual(oc1.num_output_events, 1)
        self.assertEqual(oc1.target_regime, r11)
        out1 = oc1.output_event('ESP1')
        self.assertEqual(out1.port, e.event_send_port('ESP1'))
        self.assertEqual(oc1.num_state_assignments, 0)
        oc2 = r11.on_condition('SV1__b > dp1__b')
        self.assertEqual(oc2.num_output_events, 0)
        self.assertEqual(oc2.num_state_assignments, 0)
        self.assertEqual(oc2.target_regime, r11)
        # =====================================================================
        # Regime a=1, b=2
        # =====================================================================
        r12 = e.regime('r1___r2')
        self.assertEqual(r12.num_on_conditions, 2)
        oc1 = r12.on_condition('SV1__a > cp1__a')
        self.assertEqual(set(oc1.output_event_port_names), set(('ESP1', )))
        self.assertEqual(oc1.target_regime, r12)
        oc2 = r12.on_condition('SV1__b > 1')
        self.assertEqual(oc2.num_output_events, 0)
        self.assertEqual(oc2.target_regime, r11)
        self.assertEqual(r12.num_on_events, 1)
        self.assertEqual(
            r12.on_event('ERP1').port.port, c.event_receive_port('spikein'))
        # =====================================================================
        # Regime a=2, b=1
        # =====================================================================
        r21 = e.regime('r2___r1')
        self.assertEqual(r21.num_on_conditions, 2)
        oc1 = r21.on_condition('SV1__a > 1')
        self.assertEqual(oc1.num_output_events, 0)
        self.assertEqual(oc1.num_state_assignments, 0)
        self.assertEqual(oc1.target_regime, r11)
        oc2 = r21.on_condition('SV1__b > dp1__b')
        self.assertEqual(oc2.num_output_events, 0)
        self.assertEqual(oc2.num_state_assignments, 0)
        self.assertEqual(oc2.target_regime, r21)
        self.assertEqual(r21.num_on_events, 0)
        # =====================================================================
        # Regime a=2, b=2
        # =====================================================================
        r22 = e.regime('r2___r2')
        self.assertEqual(r21.num_on_conditions, 2)
        oc1 = r22.on_condition('SV1__a > 1')
        self.assertEqual(oc1.num_output_events, 0)
        self.assertEqual(oc1.num_state_assignments, 0)
        self.assertEqual(oc1.target_regime, r12)
        oc2 = r22.on_condition('SV1__b > 1')
        self.assertEqual(oc2.num_output_events, 0)
        self.assertEqual(oc2.num_state_assignments, 0)
        self.assertEqual(oc2.target_regime, r21)
        #  - Ports & Parameters:
        self.assertEqual(set(e.analog_receive_port_names),
                         set(['ARP1', 'ARP2']))
        self.assertEqual(set(e.parameter_names),
                         set(['cp1__a', 'cp2__a', 'dp1__b', 'dp2__b']))
        self.assertEqual(set(e.state_variable_names), set(['SV1__a',
                                                           'SV1__b']))
Example #8
0
    def test_analog_ports(self):
        # Signature: name
                # No Docstring

        c = Dynamics(name='C1')
        self.assertEqual(len(list(c.analog_ports)), 0)

        c = Dynamics(name='C1')
        self.assertEqual(len(list(c.analog_ports)), 0)

        c = Dynamics(name='C1', aliases=['A:=2'],
                     analog_ports=[AnalogSendPort('A')])
        self.assertEqual(len(list(c.analog_ports)), 1)
        self.assertEqual(list(c.analog_ports)[0].mode, 'send')
        self.assertEqual(len(list(c.analog_send_ports)), 1)
        self.assertEqual(len(list(c.analog_receive_ports)), 0)
        self.assertEqual(len(list(c.analog_reduce_ports)), 0)

        c = Dynamics(name='C1', analog_ports=[AnalogReceivePort('B')])
        self.assertEqual(len(list(c.analog_ports)), 1)
        self.assertEqual(list(c.analog_ports)[0].mode, 'recv')
        self.assertEqual(len(list(c.analog_send_ports)), 0)
        self.assertEqual(len(list(c.analog_receive_ports)), 1)
        self.assertEqual(len(list(c.analog_reduce_ports)), 0)

        c = Dynamics(name='C1',
                     analog_ports=[AnalogReducePort('B', operator='+')])
        self.assertEqual(len(list(c.analog_ports)), 1)
        self.assertEqual(list(c.analog_ports)[0].mode, 'reduce')
        self.assertEqual(list(c.analog_ports)[0].operator, '+')
        self.assertEqual(len(list(c.analog_send_ports)), 0)
        self.assertEqual(len(list(c.analog_receive_ports)), 0)
        self.assertEqual(len(list(c.analog_reduce_ports)), 1)

        # Duplicate Port Names:
        self.assertRaises(
            NineMLUsageError,
            Dynamics,
            name='C1',
            aliases=['A1:=1'],
            analog_ports=[AnalogReducePort('B', operator='+'),
                          AnalogSendPort('B')]
        )

        self.assertRaises(
            NineMLUsageError,
            Dynamics,
            name='C1',
            aliases=['A1:=1'],
            analog_ports=[AnalogSendPort('A'), AnalogSendPort('A')]
        )

        self.assertRaises(
            NineMLUsageError,
            Dynamics,
            name='C1',
            aliases=['A1:=1'],
            analog_ports=[AnalogReceivePort('A'), AnalogReceivePort('A')]
        )

        self.assertRaises(
            NineMLUsageError,
            lambda: Dynamics(name='C1', analog_ports=[AnalogReceivePort('1')])
        )

        self.assertRaises(
            NineMLUsageError,
            lambda: Dynamics(name='C1', analog_ports=[AnalogReceivePort('?')])
        )
                           do=["tspike = t",
                               "V = vreset",
                               OutputEvent('spikeoutput')],
                           to="refractoryregime"),
        ),
        Regime(
            name="refractoryregime",
            transitions=[On("t >= tspike + taurefrac",
                            to="subthresholdregime")],
        )
    ],
    state_variables=[
        StateVariable('V', un.voltage),
        StateVariable('tspike', un.time),
    ],
    analog_ports=[AnalogSendPort("V", un.voltage),
                  AnalogReducePort("ISyn", un.current, operator="+"), ],

    event_ports=[EventSendPort('spikeoutput'), ],
    parameters=[Parameter('cm', un.capacitance),
                Parameter('taurefrac', un.time),
                Parameter('gl', un.conductance),
                Parameter('vreset', un.voltage),
                Parameter('vrest', un.voltage),
                Parameter('vthresh', un.voltage)])

coba = Dynamics(
    name="CobaSyn",
    aliases=["I:=g*(vrev-V)", ],
    regimes=[
        Regime(
Example #10
0
            'dSV1/dt = -SV1 / P2',
            'dSV2/dt = A3 / ARP2 + SV2 / P2',
            transitions=[On(Trigger('SV1 > P3'),
                            do=[OutputEvent('ESP1')]),
                         On('ERP1', do=[OutputEvent('ESP2')])],
            name='R1'
        ),
        Regime(name='R2',
               transitions=[
                   OnCondition('(SV1 > C1) & (SV2 < P4)',
                               target_regime_name='R1')])
    ],
    analog_ports=[AnalogReceivePort('ARP1', dimension=un.current),
                  AnalogReceivePort('ARP2', dimension=(un.resistance *
                                                       un.time)),
                  AnalogSendPort('A1',
                                 dimension=un.voltage * un.current),
                  AnalogSendPort('A2', dimension=un.current)],
    parameters=[Parameter('P1', dimension=un.voltage),
                Parameter('P2', dimension=un.time),
                Parameter('P3', dimension=un.voltage),
                Parameter('P4', dimension=un.current)],
    constants=[Constant('C1', value=-71.0, units=un.mV),
               Constant('C2', value=22.2, units=un.degC)])

ref.state_variable('SV2').annotations.set(('Z1', 'NS1'), 'Y1', 'X1', 2.0)

A = Dynamics(
    name='dyn',
    aliases=['A1:=SV2', 'A2 := ARP1 + SV2', 'A3 := SV1',
             'A4 := C2 * SV1'],
    state_variables=[
Example #11
0
 def _transform_full_component(self, trfrm, component_class, v, **kwargs):
     # -----------------------------------------------------------------
     # Remove all analog send ports with 'current' dimension so they
     # don't get confused with the converted voltage time derivative
     # expression
     # -----------------------------------------------------------------
     for port in list(trfrm.analog_send_ports):
         if port.dimension == un.current:
             trfrm.remove(port)
     # -----------------------------------------------------------------
     # Insert membrane capacitance if not present
     # -----------------------------------------------------------------
     # Get or guess the location of the membrane capacitance
     try:
         name = kwargs['membrane_capacitance']
         try:
             orig_cm = component_class.parameter(name)
         except KeyError:
             raise Pype9BuildError(
                 "Could not find specified membrane capacitance '{}'"
                 .format(name))
         cm = trfrm.parameter(orig_cm.name)
     except KeyError:  # 'membrane_capacitance' was not specified
         candidate_cms = [ccm for ccm in component_class.parameters
                          if ccm.dimension == un.capacitance]
         if len(candidate_cms) == 1:
             orig_cm = candidate_cms[0]
             cm = trfrm.parameter(orig_cm.name)
             logger.info("Guessing that '{}' is the membrane capacitance"
                         .format(orig_cm))
         elif len(candidate_cms) > 1:
             raise Pype9BuildError(
                 "Could not guess the membrane capacitance, candidates:"
                 " '{}'".format("', '".join(candidate_cms)))
         else:
             cm = Parameter("cm___pype9", dimension=un.capacitance)
             trfrm.add(cm)
         cm.annotations.set((BUILD_TRANS, PYPE9_NS), TRANSFORM_SRC, None)
     trfrm.annotations.set((BUILD_TRANS, PYPE9_NS),
                           MEMBRANE_CAPACITANCE, cm.name)
     # -----------------------------------------------------------------
     # Replace membrane voltage equation with membrane current
     # -----------------------------------------------------------------
     # Determine the regimes in which each state variables has a time
     # derivative in
     has_td = defaultdict(list)
     # List which regimes need to be clamped to their last voltage
     # (as it has no time derivative)
     clamped_regimes = []
     # The voltage clamp equation where v_clamp is the last voltage
     # value and g_clamp_ is a large conductance
     clamp_i = sympy.sympify('g_clamp___pype9 * (v - v_clamp___pype9)')
     memb_is = []
     for regime in trfrm.regimes:
         # Add an appropriate membrane current
         try:
             # Convert the voltage time derivative into a membrane
             # current
             dvdt = regime.time_derivative(v.name)
             regime.remove(dvdt)
             i = -dvdt.rhs * cm
             memb_is.append(i)
         except KeyError:
             i = clamp_i
             clamped_regimes.append(regime)
         regime.add(Alias('i___pype9', i))
         # Record state vars that have a time deriv. in this regime
         for var in regime.time_derivative_variables:
             if var != 'v':
                 has_td[var].append(regime)
     # Pick the most popular membrane current to be the alias in
     # the global scope
     assert memb_is, "No regimes contain voltage time derivatives"
     memb_i = Alias('i___pype9', max(memb_is, key=memb_is.count))
     # Add membrane current along with a analog send port
     trfrm.add(memb_i)
     i_port = AnalogSendPort('i___pype9', dimension=un.current)
     i_port.annotations.set((BUILD_TRANS, PYPE9_NS), ION_SPECIES,
                            NONSPECIFIC_CURRENT)
     trfrm.add(i_port)
     # Remove membrane currents that match the membrane current in the
     # outer scope
     for regime in trfrm.regimes:
         if regime.alias('i___pype9') == memb_i:
             regime.remove(regime.alias('i___pype9'))
     # If there are clamped regimes add extra parameters and set the
     # voltage to clamp to in the regimes that trfrmition to them
     if clamped_regimes:
         trfrm.add(StateVariable('v_clamp___pype9', un.voltage))
         trfrm.add(Constant('g_clamp___pype9', 1e8, un.uS))
         for trans in trfrm.transitions:
             if trans.target_regime in clamped_regimes:
                 # Assign v_clamp_ to the value
                 try:
                     v_clamp_rhs = trans.state_assignment('v').rhs
                 except KeyError:
                     v_clamp_rhs = 'v'
                 trans.add(StateAssignment('v_clamp___pype9',
                                           v_clamp_rhs))
     # -----------------------------------------------------------------
     trfrm.annotations.set(
         (BUILD_TRANS, PYPE9_NS), NO_TIME_DERIVS,
         ','.join(['v'] + [sv for sv in trfrm.state_variable_names
                           if sv not in has_td]))
     trfrm.annotations.set((BUILD_TRANS, PYPE9_NS), NUM_TIME_DERIVS,
                           len(has_td))
     # -----------------------------------------------------------------
     # Remove the external input currents
     # -----------------------------------------------------------------
     # Analog receive or reduce ports that are of dimension current and
     # are purely additive to the membrane current and nothing else
     # (actually subtractive as it is outward current)
     try:
         ext_is = []
         for i_name in kwargs['external_currents']:
             try:
                 ext_i = trfrm.analog_receive_port(i_name)
             except KeyError:
                 try:
                     ext_i = trfrm.analog_reduce_port(i_name)
                 except KeyError:
                     raise Pype9BuildError(
                         "Did not find specified external current port "
                         "'{}'".format(i_name))
             if ext_i.dimension != un.current:
                 raise Pype9BuildError(
                     "Analog receive port matching specified external "
                     "current '{}' does not have 'current' dimension "
                     "({})".format(ext_i.name, ext_i.dimension))
             ext_is.append(ext_i)
     except KeyError:
         ext_is = []
         for port in chain(component_class.analog_receive_ports,
                           component_class.analog_reduce_ports):
             # Check to see if the receive/reduce port has current dimension
             if port.dimension != un.current:
                 continue
             # Check to see if the current appears in the membrane current
             # expression
             # FIXME: This test should check to to see if the port is
             #        additive to the membrane current and substitute all
             #        aliases.
             if port.name not in memb_i.rhs_symbol_names:
                 continue
             # Get the number of expressions the receive port appears in
             # an expression
             if len([e for e in component_class.all_expressions
                     if port.symbol in e.free_symbols]) > 1:
                 continue
             # If all those conditions are met guess that port is a external
             # current that can be removed (ports that don't meet these
             # conditions will have to be specified separately)
             ext_is.append(port)
         if ext_is:
             logger.info("Guessing '{}' are external currents to be removed"
                         .format(ext_is))
     trfrm.annotations.set((BUILD_TRANS, PYPE9_NS), EXTERNAL_CURRENTS,
                           ','.join(p.name for p in ext_is))
     # Remove external input current ports (as NEURON handles them)
     for ext_i in ext_is:
         trfrm.remove(ext_i)
         for expr in chain(trfrm.aliases, trfrm.all_time_derivatives()):
             expr.subs(ext_i, 0)
             expr.simplify()
Example #12
0
    def setUp(self):
        liaf = Dynamics(
            name='liaf',
            parameters=[
                Parameter(name='R', dimension=un.resistance),
                Parameter(name='Vreset', dimension=un.voltage),
                Parameter(name='tau', dimension=un.time),
                Parameter(name='tau_rp', dimension=un.time),
                Parameter(name='theta', dimension=un.voltage)
            ],
            analog_ports=[
                AnalogReducePort(name='Isyn',
                                 dimension=un.current,
                                 operator='+'),
                AnalogSendPort(name='V', dimension=un.voltage),
                AnalogSendPort(name='t_rpend', dimension=un.time)
            ],
            event_ports=[EventSendPort(name='spikeOutput')],
            state_variables=[
                StateVariable(name='V', dimension=un.voltage),
                StateVariable(name='t_rpend', dimension=un.time)
            ],
            regimes=[
                Regime(name='refractoryRegime',
                       transitions=[
                           OnCondition('t > t_rpend',
                                       target_regime_name='subthresholdRegime')
                       ]),
                Regime(
                    name='subthresholdRegime',
                    time_derivatives=[TimeDerivative('V', '(Isyn*R - V)/tau')],
                    transitions=[
                        OnCondition('V > theta',
                                    target_regime_name='refractoryRegime',
                                    state_assignments=[
                                        StateAssignment('V', 'Vreset'),
                                        StateAssignment(
                                            't_rpend', 't + tau_rp')
                                    ],
                                    output_events=[OutputEvent('spikeOutput')])
                    ])
            ])

        poisson = Dynamics(
            name='Poisson',
            parameters=[Parameter(name='rate', dimension=un.per_time)],
            event_ports=[EventSendPort(name='spikeOutput')],
            state_variables=[StateVariable(name='t_next', dimension=un.time)],
            regimes=[
                Regime(name='default',
                       transitions=[
                           OnCondition(
                               't > t_next',
                               target_regime_name='default',
                               state_assignments=[
                                   StateAssignment(
                                       't_next', 'one_ms*random.exponential('
                                       'rate*thousand_milliseconds) + t')
                               ],
                               output_events=[OutputEvent('spikeOutput')])
                       ])
            ],
            constants=[
                Constant(name='one_ms', units=un.ms, value=1.0),
                Constant(name='thousand_milliseconds',
                         units=un.ms,
                         value=1000.0)
            ])

        static = Dynamics(
            name='StaticConnection',
            analog_ports=[AnalogSendPort(name='weight', dimension=un.current)],
            state_variables=[
                StateVariable(name='weight', dimension=un.current)
            ],
            regimes=[
                Regime(name='default',
                       time_derivatives=[TimeDerivative('weight', 'zero')])
            ],
            constants=[Constant(name='zero', units=un.A / un.s, value=0.0)])

        psr = Dynamics(
            name='AlphaPSR',
            parameters=[Parameter(name='tau_syn', dimension=un.time)],
            event_ports=[EventReceivePort(name='spike')],
            analog_ports=[
                AnalogReceivePort(name='weight', dimension=un.current),
                AnalogSendPort(name='A', dimension=un.current),
                AnalogSendPort(name='B', dimension=un.current),
                AnalogSendPort(name='Isyn', dimension=un.current)
            ],
            state_variables=[
                StateVariable(name='A', dimension=un.current),
                StateVariable(name='B', dimension=un.current)
            ],
            regimes=[
                Regime(name='default',
                       time_derivatives=[
                           TimeDerivative('A', '(-A + B)/tau_syn'),
                           TimeDerivative('B', '-B/tau_syn')
                       ],
                       transitions=[
                           OnEvent('spike',
                                   target_regime_name='default',
                                   state_assignments=[
                                       StateAssignment('B', 'B + weight')
                                   ])
                       ])
            ],
            aliases=['Isyn:=A'])

        one_to_one_class = ConnectionRule(
            'OneToOneClass',
            standard_library=(
                "http://nineml.net/9ML/1.0/connectionrules/OneToOne"))

        self.one_to_one = ConnectionRuleProperties("OneToOne",
                                                   one_to_one_class, {})

        random_fan_in_class = ConnectionRule(
            name="RandomFanIn",
            parameters=[Parameter(name="number")],
            standard_library=(
                "http://nineml.net/9ML/1.0/connectionrules/RandomFanIn"))

        exc_random_fan_in = ConnectionRuleProperties(
            name="RandomFanInProps",
            definition=random_fan_in_class,
            properties={'number': 100})

        inh_random_fan_in = ConnectionRuleProperties(
            name="RandomFanInProps",
            definition=random_fan_in_class,
            properties={'number': 200})

        self.celltype = DynamicsProperties(name="liaf_props",
                                           definition=liaf,
                                           properties={
                                               'tau': self.tau,
                                               'theta': self.theta,
                                               'tau_rp': 2.0 * un.ms,
                                               'Vreset': 10.0 * un.mV,
                                               'R': 1.5 * un.Mohm
                                           },
                                           initial_values={
                                               "V": 0.0 * un.mV,
                                               "t_rpend": 0.0 * un.ms
                                           })
        ext_stim = DynamicsProperties(name="stim",
                                      definition=poisson,
                                      properties={'rate': self.input_rate},
                                      initial_values={"t_next": 0.5 * un.ms})

        self.psr = DynamicsProperties(name="syn",
                                      definition=psr,
                                      properties={'tau_syn': self.tau_syn},
                                      initial_values={
                                          "A": 0.0 * un.nA,
                                          "B": 0.0 * un.nA
                                      })

        exc = Population("Exc", self.order * 4, self.celltype)
        inh = Population("Inh", self.order, self.celltype)
        ext = Population("Ext", self.order * 5, ext_stim)
        exc_and_inh = Selection("All", Concatenate((exc, inh)))

        self.static_ext = DynamicsProperties(
            "ExternalPlasticity",
            static, {},
            initial_values={"weight": self.Je * un.nA})

        static_exc = DynamicsProperties(
            "ExcitatoryPlasticity",
            static, {},
            initial_values={"weight": self.Je * un.nA})

        static_inh = DynamicsProperties(
            "InhibitoryPlasticity",
            static,
            initial_values={"weight": self.Ji * un.nA})

        ext_prj = Projection("External",
                             pre=ext,
                             post=exc_and_inh,
                             response=self.psr,
                             plasticity=self.static_ext,
                             connection_rule_properties=self.one_to_one,
                             delay=self.delay,
                             port_connections=[
                                 ('response', 'Isyn', 'post', 'Isyn'),
                                 ('plasticity', 'weight', 'response', 'weight')
                             ])

        exc_prj = Projection("Excitation",
                             pre=exc,
                             post=exc_and_inh,
                             response=self.psr,
                             plasticity=static_exc,
                             connection_rule_properties=exc_random_fan_in,
                             delay=self.delay,
                             port_connections=[
                                 ('response', 'Isyn', 'post', 'Isyn'),
                                 ('plasticity', 'weight', 'response', 'weight')
                             ])
        inh_prj = Projection("Inhibition",
                             pre=inh,
                             post=exc_and_inh,
                             response=self.psr,
                             plasticity=static_inh,
                             connection_rule_properties=inh_random_fan_in,
                             delay=self.delay,
                             port_connections=[
                                 ('response', 'Isyn', 'post', 'Isyn'),
                                 ('plasticity', 'weight', 'response', 'weight')
                             ])
        self.model = Network("brunel_network")
        self.model.add(ext)
        self.model.add(exc)
        self.model.add(inh)
        self.model.add(exc_and_inh)
        self.model.add(ext_prj)
        self.model.add(exc_prj)
        self.model.add(inh_prj)
Example #13
0
    def setUp(self):
        self.pre_dynamics = Dynamics(
            name='PreDynamics',
            state_variables=[StateVariable('SV1', dimension=un.voltage)],
            regimes=[
                Regime('dSV1/dt = -SV1 / P1',
                       transitions=[On('SV1 > P2', do=[OutputEvent('emit')])],
                       name='R1'),
            ],
            parameters=[
                Parameter('P1', dimension=un.time),
                Parameter('P2', dimension=un.voltage)
            ])

        self.post_dynamics = Dynamics(
            name='PostDynamics',
            state_variables=[StateVariable('SV1', dimension=un.voltage)],
            regimes=[
                Regime('dSV1/dt = -SV1 / P1 + ARP1 / P2', name='R1'),
            ],
            analog_ports=[AnalogReceivePort('ARP1', dimension=un.current)],
            parameters=[
                Parameter('P1', dimension=un.time),
                Parameter('P2', dimension=un.capacitance)
            ])

        self.response_dynamics = Dynamics(
            name='ResponseDynamics',
            state_variables=[StateVariable('SV1', dimension=un.current)],
            regimes=[
                Regime('dSV1/dt = -SV1 / P1',
                       transitions=[
                           On('receive',
                              do=[StateAssignment('SV1', 'SV1 + P2')])
                       ],
                       name='R1'),
            ],
            analog_ports=[AnalogSendPort('SV1', dimension=un.current)],
            parameters=[
                Parameter('P1', dimension=un.time),
                Parameter('P2', dimension=un.current)
            ])

        self.pre = Population(name="PrePopulation",
                              size=1,
                              cell=DynamicsProperties(
                                  name="PreDynamicsProps",
                                  definition=self.pre_dynamics,
                                  properties={
                                      'P1': 1 * un.ms,
                                      'P2': -65 * un.mV
                                  }))

        self.post = Population(name="PostPopulation",
                               size=1,
                               cell=DynamicsProperties(
                                   name="PostDynamicsProps",
                                   definition=self.post_dynamics,
                                   properties={
                                       'P1': 1 * un.ms,
                                       'P2': 1 * un.uF
                                   }))

        self.one_to_one = ConnectionRule(
            name="OneToOne",
            standard_library=(NINEML_NS + '/connectionrules/OneToOne'))

        self.projection = Projection(
            name="Projection",
            pre=self.pre,
            post=self.post,
            response=DynamicsProperties(name="ResponseProps",
                                        definition=self.response_dynamics,
                                        properties={
                                            'P1': 10 * un.ms,
                                            'P2': 1 * un.nA
                                        }),
            connection_rule_properties=ConnectionRuleProperties(
                name="ConnectionRuleProps", definition=self.one_to_one),
            delay=1 * un.ms)
Example #14
0
                    OutputEvent('spikeoutput')],
                to="refractoryregime"),
        ),
        Regime(
            name="refractoryregime",
            transitions=[
                On("t >= tspike + taurefrac", to="subthresholdregime")
            ],
        )
    ],
    state_variables=[
        StateVariable('V', un.voltage),
        StateVariable('tspike', un.time),
    ],
    analog_ports=[
        AnalogSendPort("V", un.voltage),
        AnalogReducePort("ISyn", un.current, operator="+"),
    ],
    event_ports=[
        EventSendPort('spikeoutput'),
    ],
    parameters=[
        Parameter('cm', un.capacitance),
        Parameter('taurefrac', un.time),
        Parameter('gl', un.conductance),
        Parameter('vreset', un.voltage),
        Parameter('vrest', un.voltage),
        Parameter('vthresh', un.voltage)
    ])

coba = Dynamics(name="CobaSyn",
Example #15
0
def get_compound_component():
    """Cannot yet be implemented in PyDSTool
    """
    from nineml.abstraction.testing_utils import RecordValue
    from nineml.abstraction import Dynamics, Regime, On, OutputEvent, AnalogSendPort, AnalogReducePort

    emitter = Dynamics(
        name='EventEmitter',
        parameters=['cyclelength'],
        regimes=[
            Regime(transitions=On('t > tchange + cyclelength',
                                  do=[OutputEvent('emit'), 'tchange=t'])),
        ])

    ev_based_cc = Dynamics(
        name='EventBasedCurrentClass',
        parameters=['dur', 'i'],
        analog_ports=[AnalogSendPort('I')],
        regimes=[
            Regime(transitions=[
                On('inputevent', do=['I=i', 'tchange = t']),
                On('t>tchange + dur', do=['I=0', 'tchange=t'])
            ])
        ])

    pulsing_emitter = Dynamics(name='pulsing_cc',
                               subnodes={
                                   'evs': emitter,
                                   'cc': ev_based_cc
                               },
                               portconnections=[('evs.emit', 'cc.inputevent')])

    nrn = Dynamics(
        name='LeakyNeuron',
        parameters=['Cm', 'gL', 'E'],
        regimes=[
            Regime('dV/dt = (iInj + (E-V)*gL )/Cm'),
        ],
        aliases=['iIn := iInj'],
        analog_ports=[
            AnalogSendPort('V'),
            AnalogReducePort('iInj', operator='+')
        ],
    )

    combined_comp = Dynamics(name='Comp1',
                             subnodes={
                                 'nrn': nrn,
                                 'cc1': pulsing_emitter,
                                 'cc2': pulsing_emitter
                             },
                             portconnections=[('cc1.cc.I', 'nrn.iInj'),
                                              ('cc2.cc.I', 'nrn.iInj')])

    combined_comp = al.flattening.flatten(combined_comp)

    ##        records = [
    ##            RecordValue(what='cc1_cc_I', tag='Current', label='Current Clamp 1'),
    ##            RecordValue(what='cc2_cc_I', tag='Current', label='Current Clamp 2'),
    ##            RecordValue(what='nrn_iIn', tag='Current', label='Total Input Current'),
    ##            RecordValue(what='nrn_V', tag='Voltage', label='Neuron Voltage'),
    ##            RecordValue(what='cc1_cc_tchange', tag='Tchange', label='tChange CC1'),
    ##            RecordValue(what='cc2_cc_tchange', tag='Tchange', label='tChange CC2'),
    ##            RecordValue(what='regime',     tag='Regime',  label='Regime'),
    ##        ]

    parameters = al.flattening.ComponentFlattener.flatten_namespace_dict({
        'cc1.cc.i':
        13.8,
        'cc1.cc.dur':
        10,
        'cc1.evs.cyclelength':
        30,
        'cc2.cc.i':
        20.8,
        'cc2.cc.dur':
        5.0,
        'cc2.evs.cyclelength':
        20,
        'nrn.gL':
        4.3,
        'nrn.E':
        -70
    })

    return combined_comp, parameters
Example #16
0
    def setUp(self):

        self.a = Dynamics(
            name='A',
            aliases=[
                'A1:=P1 / P2', 'A2 := ARP2 + P3', 'A3 := A4 * P4 * P5',
                'A4:=P6 ** 2 + ADP1', 'A5:=SV1 * SV2 * P8',
                'A6:=SV1 * P1 / P8', 'A7:=A1 / P8'
            ],
            regimes=[
                Regime('dSV1/dt = -A1 / A2',
                       'dSV2/dt = -ADP1 / P7',
                       'dSV3/dt = -A1 * A3 / (A2 * C1)',
                       transitions=[
                           OnCondition('SV1 > 10', target_regime_name='R2')
                       ],
                       aliases=[
                           Alias('A1', 'P1 / P2 * 2'),
                           Alias('A5', 'SV1 * SV2 * P8 * 2')
                       ],
                       name='R1'),
                Regime('dSV1/dt = -A1 / A2',
                       'dSV3/dt = -A1 / A2 * A4',
                       transitions=[
                           OnCondition('C2 > A6',
                                       state_assignments=[
                                           StateAssignment('SV1', 'SV1 - A7')
                                       ],
                                       target_regime_name='R1')
                       ],
                       name='R2')
            ],
            analog_ports=[
                AnalogReceivePort('ARP1', dimension=un.resistance),
                AnalogReceivePort('ARP2', dimension=un.charge),
                AnalogReducePort('ADP1', dimension=un.dimensionless),
                AnalogSendPort('A5', dimension=un.current)
            ],
            parameters=[
                Parameter('P1', dimension=un.voltage),
                Parameter('P2', dimension=un.resistance),
                Parameter('P3', dimension=un.charge),
                Parameter('P4', dimension=old_div(un.length, un.current**2)),
                Parameter('P5', dimension=old_div(un.current**2, un.length)),
                Parameter('P6', dimension=un.dimensionless),
                Parameter('P7', dimension=un.time),
                Parameter('P8', dimension=un.current)
            ],
            constants=[
                Constant('C1', value=10.0, units=un.unitless),
                Constant('C2', value=1.0, units=un.ohm)
            ])

        self.ref_substituted_a = Dynamics(
            name='substituted_A',
            aliases=['A5:=SV1 * SV2 * P8'],
            regimes=[
                Regime('dSV1/dt = -2 * (P1 / P2) / (ARP2 + P3)',
                       'dSV2/dt = -ADP1 / P7',
                       ('dSV3/dt = -2 * (P1 / P2) * ((P6 ** 2 + ADP1) * P4 * '
                        'P5) / ((ARP2 + P3) * C1)'),
                       transitions=[
                           OnCondition('SV1 > 10', target_regime_name='R2')
                       ],
                       aliases=[Alias('A5', 'SV1 * SV2 * P8 * 2')],
                       name='R1'),
                Regime('dSV1/dt = -(P1 / P2) / (ARP2 + P3)',
                       'dSV3/dt = -(P1 / P2) / (ARP2 + P3) * (P6 ** 2 + ADP1)',
                       transitions=[
                           OnCondition('C2 > (SV1 * P1 / P8)',
                                       state_assignments=[
                                           StateAssignment(
                                               'SV1', 'SV1 - (P1 / P2) / P8')
                                       ],
                                       target_regime_name='R1')
                       ],
                       name='R2')
            ],
            analog_ports=[
                AnalogReceivePort('ARP1', dimension=un.resistance),
                AnalogReceivePort('ARP2', dimension=un.charge),
                AnalogReducePort('ADP1', dimension=un.dimensionless),
                AnalogSendPort('A5', dimension=un.current)
            ],
            parameters=[
                Parameter('P1', dimension=un.voltage),
                Parameter('P2', dimension=un.resistance),
                Parameter('P3', dimension=un.charge),
                Parameter('P4', dimension=old_div(un.length, un.current**2)),
                Parameter('P5', dimension=old_div(un.current**2, un.length)),
                Parameter('P6', dimension=un.dimensionless),
                Parameter('P7', dimension=un.time),
                Parameter('P8', dimension=un.current)
            ],
            constants=[
                Constant('C1', value=10.0, units=un.unitless),
                Constant('C2', value=1.0, units=un.ohm)
            ])
Example #17
0
                               On(Trigger('SV1 > P3'),
                                  do=[OutputEvent('ESP1')]),
                               On('ERP1', do=[OutputEvent('ESP2')])
                           ],
                           name='R1'),
                    Regime(name='R2',
                           transitions=[
                               OnCondition('(SV1 > C1) & (SV2 < P4)',
                                           target_regime_name='R1')
                           ])
                ],
                analog_ports=[
                    AnalogReceivePort('ARP1', dimension=un.current),
                    AnalogReceivePort('ARP2',
                                      dimension=(un.resistance * un.time)),
                    AnalogSendPort('A1', dimension=un.voltage * un.current),
                    AnalogSendPort('A2', dimension=un.current)
                ],
                parameters=[
                    Parameter('P1', dimension=un.voltage),
                    Parameter('P2', dimension=un.time),
                    Parameter('P3', dimension=un.voltage),
                    Parameter('P4', dimension=un.current)
                ],
                constants=[
                    Constant('C1', value=-71.0, units=un.mV),
                    Constant('C2', value=22.2, units=un.degC)
                ])

dynB = Dynamics(
    name='dynB',
Example #18
0
 def test_name(self):
     # Signature: name
     # The name of the port, local to the current component
     self.assertEqual(AnalogReceivePort('A').name, 'A')
     self.assertEqual(AnalogReducePort('B', operator='+').name, 'B')
     self.assertEqual(AnalogSendPort('C').name, 'C')