Example #1
0
def test_1d():
    B = gen_BrownianMotion()
    Bs = aliased_function("B", B)
    t = sympy.Symbol('t')
    def_t = sympy.DeferredVector('t')
    def_expr = 3*sympy.exp(Bs(def_t)) + 4
    expected = 3*np.exp(B.y)+4
    ee_lam = lambdify(def_t, def_expr)
    yield assert_almost_equal(ee_lam(B.x), expected)
    # use vectorize to do the deferred stuff
    expr = 3*sympy.exp(Bs(t)) + 4
    ee_vec = vectorize(expr)
    yield assert_almost_equal(ee_vec(B.x), expected)
    # with any arbitrary symbol
    b = sympy.Symbol('b')
    expr = 3*sympy.exp(Bs(b)) + 4
    ee_vec = vectorize(expr, b)
    yield assert_almost_equal(ee_vec(B.x), expected)
Example #2
0
def test_vectorize():
    theta = sympy.Symbol('theta')
    num_func = lambdify(theta, sympy.cos(theta))
    yield assert_equal(num_func(0), 1)
    # we don't need to do anything for a naturally numpy'ed function
    yield assert_array_almost_equal(num_func([0, np.pi]), [1, -1])
    # but we do for single valued functions
    func = aliased_function('f', lambda x: x**2)
    num_func = lambdify(theta, func(theta))
    yield assert_equal(num_func(2), 4)
    # ** on a list raises a type error
    yield assert_raises(TypeError, num_func, [2, 3])
    # so vectorize
    num_func = vectorize(func(theta), theta)