def test_Normalize_outputs(): output_map = dict(normalization_parameters=dict(), normalized_files=dict(), normalized_source=dict(), ) outputs = Normalize.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value
def test_Normalize_inputs(): input_map = dict( DCT_period_cutoff=dict(field='eoptions.cutoff', ), affine_regularization_type=dict(field='eoptions.regtype', ), apply_to_files=dict( copyfile=True, field='subj.resample', ), ignore_exception=dict( nohash=True, usedefault=True, ), jobtype=dict(), matlab_cmd=dict(), mfile=dict(usedefault=True, ), nonlinear_iterations=dict(field='eoptions.nits', ), nonlinear_regularization=dict(field='eoptions.reg', ), out_prefix=dict( field='roptions.prefix', usedefault=True, ), parameter_file=dict( copyfile=False, field='subj.matname', mandatory=True, xor=['source', 'template'], ), paths=dict(), source=dict( copyfile=True, field='subj.source', mandatory=True, xor=['parameter_file'], ), source_image_smoothing=dict(field='eoptions.smosrc', ), source_weight=dict( copyfile=False, field='subj.wtsrc', ), template=dict( copyfile=False, field='eoptions.template', mandatory=True, xor=['parameter_file'], ), template_image_smoothing=dict(field='eoptions.smoref', ), template_weight=dict( copyfile=False, field='eoptions.weight', ), use_mcr=dict(), use_v8struct=dict( min_ver='8', usedefault=True, ), write_bounding_box=dict(field='roptions.bb', ), write_interp=dict(field='roptions.interp', ), write_preserve=dict(field='roptions.preserve', ), write_voxel_sizes=dict(field='roptions.vox', ), write_wrap=dict(field='roptions.wrap', ), ) inputs = Normalize.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value
def test_Normalize_inputs(): input_map = dict(DCT_period_cutoff=dict(field='eoptions.cutoff', ), affine_regularization_type=dict(field='eoptions.regype', ), apply_to_files=dict(copyfile=True, field='subj.resample', ), ignore_exception=dict(nohash=True, usedefault=True, ), jobtype=dict(usedefault=True, ), matlab_cmd=dict(), mfile=dict(usedefault=True, ), nonlinear_iterations=dict(field='eoptions.nits', ), nonlinear_regularization=dict(field='eoptions.reg', ), out_prefix=dict(field='roptions.prefix', usedefault=True, ), parameter_file=dict(copyfile=False, field='subj.matname', mandatory=True, xor=['source', 'template'], ), paths=dict(), source=dict(copyfile=True, field='subj.source', mandatory=True, xor=['parameter_file'], ), source_image_smoothing=dict(field='eoptions.smosrc', ), source_weight=dict(copyfile=False, field='subj.wtsrc', ), template=dict(copyfile=False, field='eoptions.template', mandatory=True, xor=['parameter_file'], ), template_image_smoothing=dict(field='eoptions.smoref', ), template_weight=dict(copyfile=False, field='eoptions.weight', ), use_mcr=dict(), use_v8struct=dict(min_ver='8', usedefault=True, ), write_bounding_box=dict(field='roptions.bb', ), write_interp=dict(field='roptions.interp', ), write_preserve=dict(field='roptions.preserve', ), write_voxel_sizes=dict(field='roptions.vox', ), write_wrap=dict(field='roptions.wrap', ), ) inputs = Normalize.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value