pipeline.append(trainer) # Finally, call evaluate() on the workflow DAG outputs, This will # automatically append Evaluators to compute metrics from the given # SavedModel and 'eval' TF Examples. self.evaluate( pipeline, examples=task.train_and_eval_examples, model=trainer.outputs.model) if __name__ == '__main__': run_config = dict( pipeline_name=config.PIPELINE_NAME + '_openML', data_dir=config.OTHER_DOWNLOAD_DIR, ) if config.USE_KUBEFLOW: # We need the string "KubeflowDagRunner" in this file to appease the # validator used in `tfx create pipeline`. # Validator: https://github.com/tensorflow/tfx/blob/v0.22.0/tfx/tools/cli/handler/base_handler.py#L105 nitroml.main( pipeline_root=config.PIPELINE_ROOT, tfx_runner=nitroml.get_default_kubeflow_dag_runner(), **run_config) else: # This example has not been tested with engines other than Kubeflow. nitroml.main(**run_config)
examples=task.train_and_eval_examples, preprocessor=ad.BasicPreprocessor())) # Define a Trainer to train our model on the given task. trainer = self.add( at.AutoTrainer( problem_statement=task.problem_statement, transformed_examples=autodata.outputs.transformed_examples, transform_graph=autodata.outputs.transform_graph, schema=autodata.outputs.schema, train_steps=1000, eval_steps=500, enable_tuning=enable_tuning)) # Finally, call evaluate() on the workflow DAG outputs. This will # automatically append Evaluators to compute metrics from the given # SavedModel and 'eval' TF Examples. self.evaluate(task=task, model=trainer.outputs.model) if __name__ == '__main__': if config.USE_KUBEFLOW: # We need the string "KubeflowDagRunner" in this file to appease the # validator used in `tfx create pipeline`. # Validator: https://github.com/tensorflow/tfx/blob/v0.22.0/tfx/tools/cli/handler/base_handler.py#L105 nitroml.main(pipeline_name=config.PIPELINE_NAME + '_titanic', pipeline_root=config.PIPELINE_ROOT, data_dir=config.TF_DOWNLOAD_DIR, tfx_runner=nitroml.get_default_kubeflow_dag_runner()) else: nitroml.main()
task_pipeline = task.components + autodata.components + test_meta_components + [ trainer ] # Finally, call evaluate() on the workflow DAG outputs, This will # automatically append Evaluators to compute metrics from the given # SavedModel and 'eval' TF Examples.ss self.evaluate(task_pipeline, examples=task.train_and_eval_examples, model=trainer.outputs.model) if __name__ == '__main__': metalearning_algorithm = 'nearest_neighbor' run_config = dict(pipeline_name=f'metalearning_{metalearning_algorithm}', data_dir=config.OTHER_DOWNLOAD_DIR, algorithm=metalearning_algorithm) if config.USE_KUBEFLOW: # We need the string "KubeflowDagRunner" in this file to appease the # validator used in `tfx create pipeline`. # Validator: https://github.com/tensorflow/tfx/blob/v0.22.0/tfx/tools/cli/handler/base_handler.py#L105 nitroml.main(pipeline_root=os.path.join(config.PIPELINE_ROOT, run_config['pipeline_name']), tfx_runner=nitroml.get_default_kubeflow_dag_runner(), **run_config) else: # This example has not been tested with engines other than Kubeflow. nitroml.main(**run_config)