Example #1
0
def events_per_second_plot(flist, savefig=None, ax=None):
    log.info("Generating EXP per s plot")
    d = {}
    for f in tqdm(flist):
        tab = Table.read(f, hdu=1)
        date = tab.meta['DATE-OBS']
        exposure = tab.meta['EXPOSURE']
        table_length = len(tab)

        if exposure == 0:
            continue
        if date in d.keys():
            d[date] += table_length / exposure
        else:
            d[date] = table_length / exposure

    if ax is None:
        fig, ax = plt.subplots(1, 1, figsize=(12, 6))
        plt.subplots_adjust(top=.98, right=.98)
        ax = niutils.plotparams(ax)
        created_fig = True
    else:
        created_fig = False

    dates = list(d.keys())
    format_specifier = '%Y-%m-%dT%H:%M:%S'
    dates_formatted = [
        datetime.datetime.strptime(s, format_specifier) for s in dates
    ]

    temp = []
    for i in range(len(dates_formatted)):
        dtemp = datetime.datetime(year=2017, month=11, day=1)
        if dates_formatted[i] < dtemp:
            temp.append(d[dates[i]])

    print(len(temp))
    print(np.median(temp))
    print(np.mean(temp))

    #Need to fix this

    df = pd.DataFrame({'dates': dates_formatted, 'vals': list(d.values())})
    df.sort_values('dates', inplace=True)
    print(df)

    color = niutils.get_colors()['br_colors'][-1]
    ax.plot_date(df['dates'], df['vals'], color=color, ls='-')

    ax.xaxis.set_minor_locator(MonthLocator())

    ax.set_xlabel("Observation Start Date", fontsize=20)
    ax.set_ylabel(r'Count Rate (s$^{-1}$)', fontsize=20)

    if (savefig is None) and (created_fig):
        plt.show()
    elif savefig is not None:
        fig.savefig(savefig)
    else:
        return ax
Example #2
0
def plot_data(fnames, column, savefig=None):

    if niutils.check_iter(fnames):
        df = merge_tables(fnames)
        tab_for_format = fnames[0]
        ntab = len(fnames)
    else:
        df = read_table(fnames)
        tab_for_format = fname
        ntab = 1

    if column is None:
        raise ValueError("Column can not be None")

    df = add_datetime_col(df)


    fig, ax = plt.subplots(1, 1, figsize=(12*ntab, 6))
    ax = niutils.plotparams(ax)


    if not niutils.check_iter(column):
        column = [column]

    mask = [ np.where(df[column[i]] != -9999.9)[0] 
              for i in range(len(column)) ]

    colors = niutils.get_colors()['br_colors']
    colors = [colors[0], colors[2]]

    ax.plot(df['datetime'][mask[0]], df[column[0]][mask[0]], 
            color=colors[0], label=column[0])

    ax.set_xlabel("Date", fontsize=20)
    ax.set_ylabel(format_ace_column(column[0], table=tab_for_format), 
                  fontsize=20)

    if len(column) > 1:
        ax, ax1 = niutils.DoubleY(ax, colors=(colors[0], colors[1]))

        ax1.plot(df['datetime'][mask[1]], df[column[1]][mask[1]], 
                 color=colors[1], label=column[1])

        ax1.set_ylabel(format_ace_column(column[1], table=tab_for_format), 
                       fontsize=20)

    if max(df['day']) > 180:
        ax.xaxis.set_minor_locator(MonthLocator())
    else:
        ax.xaxis.set_major_locator(MonthLocator())
        ax.xaxis.set_minor_locator(MonthLocator(bymonthday=15))
        myfmt = DateFormatter('%Y-%m')
        ax.xaxis.set_major_formatter(myfmt)

    if savefig is None:
        plt.show()
    else:
        fig.savefig(savefig)
Example #3
0
def plot_data_split(fnames, column, savefig=None):

    if niutils.check_iter(fnames):
        df_list = [read_table(f) for f in fnames]
    else:
        raise ValueError("Must input multiple filenames")

    if column is None:
        raise ValueError("Column can not be None")

    df_list = [add_datetime_col(df) for df in df_list]

    fig, ax = plt.subplots(len(df_list), 1, figsize=(12, 5.2*len(df_list)))
    plt.subplots_adjust(top=.98, bottom=.07)

    for a in ax: a = niutils.plotparams(a)

    if not niutils.check_iter(column):
        column = [column]

    colors = niutils.get_colors()['br_colors']
    colors = [colors[0], colors[2]]

    for i in range(len(df_list)):
        df = df_list[i]
        mask = [ np.where(df[column[i]] != -9999.9)[0] 
                  for i in range(len(column)) ]

        ax[i].plot(df['datetime'][mask[0]], df[column[0]][mask[0]], 
                      color=colors[0], label=column[0])

        ax[i].set_xlabel("Date", fontsize=20)
        ax[i].set_ylabel(format_ace_column(column[0], table=fnames[0]), 
                         fontsize=20)
        if len(column) > 1:
            ax[i], ax1 = niutils.DoubleY(ax[i], colors=(colors[0], colors[1]))

            ax1.plot(df['datetime'][mask[1]], df[column[1]][mask[1]], 
                     color=colors[1], label=column[1])

            ax1.set_ylabel(format_ace_column(column[1], 
                           table=fnames[0]), fontsize=20)
        if max(df['day']) > 180:
            ax[i].xaxis.set_minor_locator(MonthLocator())
        else:
            ax[i].xaxis.set_major_locator(MonthLocator())
            ax[i].xaxis.set_minor_locator(MonthLocator(bymonthday=15))
            myfmt = DateFormatter('%Y-%m')
            ax[i].xaxis.set_major_formatter(myfmt)

    if savefig is None:
        plt.show()
    else:
        fig.savefig(savefig)
Example #4
0
def br_earth_hist(table, bins=50, save=None):

    tab = Table.read(table, hdu=1)
    fig, ax = plt.subplots(1, 1, figsize=(12, 6))
    ax = niutils.plotparams(ax)

    plt.subplots_adjust(top=.98, right=.98)

    br_earth = [b for b in tab['BR_EARTH'] if b < 180]
    ax.hist(br_earth,
            bins=bins,
            edgecolor='black',
            color=niutils.get_colors()['br_colors'][-1])
    ax.set_ylabel("N Rows", fontsize=20)
    ax.set_xlabel('Bright Earth Angle', fontsize=20)
    plt.setp(ax.get_yticklabels()[0], visible=False)

    if save is not None:
        fig.savefig(save)
    else:
        plt.show()
Example #5
0
def mkf_hist(table, key, hdu=1, bins=50, pickle_file=None, save=None):

    if pickle_file is None:
        tab = Table.read(table, hdu=hdu)
    else:
        tab = pickle.load(open(pickle_file, 'rb'))
    fig, ax = plt.subplots(1, 1, figsize=(12, 6))
    ax = niutils.plotparams(ax)

    assert (key in tab.colnames)

    ax.hist(tab[key],
            bins=bins,
            edgecolor='black',
            color=niutils.get_colors()['br_colors'][-1])
    ax.set_ylabel("N Rows", fontsize=20)
    ax.set_xlabel(key, fontsize=20)

    if save is not None:
        fig.savefig(save)
    else:
        plt.show()
def paper_plot(mkf_list):
    """
    Go through all mkfs
    find out which split tables are longest in each of the four categories
    Plot the earth elevation and bright earth angles
    """

    fig, ax = plt.subplots(1, 1, figsize=(12, 12))

    d = {
        'increasing': ['', 0],
        'decreasing': ['', 0],
        'touches200': ['', 0],
        'localextrema': ['', 0]
    }

    for mkf in tqdm(mkf_list):
        tab = Table.read(mkf, hdu=1)
        tab_list = dfsplit(tab, 2)

        for t in tab_list:
            if len(t) <= 5:
                continue

            if touches_200(t, 'BR_EARTH'):
                if len(t) > d['touches200'][1]:
                    d['touches200'][0] = t
                    d['touches200'][1] = len(t)
            elif always_increasing(t, 'BR_EARTH'):
                if len(t) > d['increasing'][1]:
                    d['increasing'][0] = t
                    d['increasing'][1] = len(t)
            elif always_decreasing(t, 'BR_EARTH'):
                if len(t) > d['decreasing'][1]:
                    d['decreasing'][0] = t
                    d['decreasing'][1] = len(t)
            elif local_extrema(t, 'BR_EARTH'):
                if len(t) > d['localextrema'][1]:
                    d['localextrema'][0] = t
                    d['localextrema'][1] = len(t)
            else:
                if len(groups) == 4:
                    print(f'Problem with groups for {mkf}')

    ax = niutils.plotparams(ax)

    colors = niutils.get_colors()['br_colors']
    darkcolors = niutils.get_colors()['br_colors_dark']

    for i in range(len(d.keys())):
        t = d[list(d.keys())[i]][0]
        ax.plot(t['TIME'] - t['TIME'].min(),
                t['BR_EARTH'],
                color=colors[i],
                lw=2)
        ax.plot(t['TIME'] - t['TIME'].min(),
                t['ELV'],
                color=darkcolors[i],
                lw=2)

    plt.show()
Example #7
0
def cumulative_exposure_plot(flist, savefig=None, ax=None):
    log.info("Generating cumulative exposure plot")

    d = {}
    format_specifier = '%Y-%m-%dT%H:%M:%S'

    for f in tqdm(flist):
        tab = Table.read(f, hdu=1)
        date = tab.meta['DATE-OBS']
        exposure = tab.meta['EXPOSURE']
        if exposure == 0:
            continue

        date_formatted = datetime.datetime.strptime(date, format_specifier)
        date_formatted = date_formatted.replace(hour=0, minute=0, second=0)
        if date_formatted in d.keys():
            d[date_formatted] += exposure
        else:
            d[date_formatted] = exposure

    sorted_dates = list(d.keys())
    sorted_dates.sort()

    mindate = min(list(d.keys()))
    maxdate = max(list(d.keys()))

    iterdate = mindate - datetime.timedelta(1)
    date_list = []
    exposure_cumulative = []
    while iterdate <= maxdate + datetime.timedelta(1):

        date_list.append(iterdate)

        if len(exposure_cumulative) == 0:
            exposure_next = 0
        elif iterdate in d.keys():
            exposure_next = exposure_cumulative[-1] + d[iterdate]
        else:
            exposure_next = exposure_cumulative[-1]

        exposure_cumulative.append(exposure_next)

        iterdate = iterdate + datetime.timedelta(1)

    if ax is None:
        fig, ax = plt.subplots(1, 1, figsize=(12, 6))
        plt.subplots_adjust(top=.98, right=.98, bottom=.16)
        ax = niutils.plotparams(ax)
        created_fig = True
    else:
        created_fig = False

    exposure_cumulative = [e / (10e10) for e in exposure_cumulative]
    ax.plot(date_list,
            exposure_cumulative,
            color=niutils.get_colors()['3c50_color'],
            lw=3)

    ax.xaxis.set_minor_locator(MonthLocator())

    ax.set_xlabel("Observation Start Date", fontsize=20)
    ax.set_ylabel(r'Cumulative Expsoure ($\times10^{10}$ s)', fontsize=20)

    if (savefig is None) and (created_fig):
        plt.show()
    elif savefig is not None:
        fig.savefig(savefig)
    else:
        return ax
def plot_bkgd_spectra(br_data_list, br_ranges,
                      sa_ranges=None,
                      environ=None, bkg3c50=None,
                      two_panel=False, savefig=None,
                      zoom_top=0.9, zoom_bottom=0.3,
                      zoom_left=0.28, zoom_right=0.92):

    assert(len(br_data_list) == len(br_ranges))

    br_data_list = reformat_input(br_data_list)

    if any( [ l > 1 for l in check_length(br_data_list)[1] ] ):
        assert(sa_ranges is not None)

        sa_ranges = reformat_input(sa_ranges)
        assert(check_length(br_data_list) == check_length(sa_ranges))



    linestyles = ['-', '--', '-.', ':']

    data_flat = []
    br_ranges_flat = []
    sa_ranges_flat = []
    ls_flat = []

    for i in range(len(br_data_list)):
        for j in range(len(br_data_list[i])):
            data_flat.append(br_data_list[i][j])
            br_ranges_flat.append(br_ranges[i])
            if sa_ranges is not None:
                sa_ranges_flat.append(sa_ranges[i][j])
            ls_flat.append(linestyles[j])

    colors_flat = [ niutils.map_colors()[r] for r in br_ranges_flat ]
    if sa_ranges is None:
        labels_flat = [ niutils.br_label(r) for r in br_ranges_flat ]
    else:
        labels_flat = [ f'{niutils.br_label(br_ranges_flat[i])}; {niutils.sa_label(sa_ranges_flat[i])}' for i in range(len(br_ranges_flat)) ]

    if environ is not None:
        data_flat.append(environ)
        colors_flat.append(niutils.get_colors()['environ_color'])
        labels_flat.append("Environmental Model")
        ls_flat.append('-')

    if bkg3c50 is not None:
        data_flat.append(bkg3c50)
        colors_flat.append(niutils.get_colors()['3c50_color'])
        labels_flat.append('3C50 Model')
        ls_flat.append('-')

    if two_panel:
        fig, (ax, ax1) = plt.subplots(2, 1, figsize=(16, 14))
        plt.subplots_adjust(hspace=.1, top=.98, right=.98, 
                            bottom=.08, left=.08)
        ax_list = [ax, ax1]

    else:
        fig, ax = plt.subplots(1, 1, figsize=(15, 8))
        ax_list = [ax]

    for a in ax_list: a = niutils.plotparams(a)

    markers = ['.', 'o']
    for i in range(len(data_flat)):
        df = pd.read_csv(data_flat[i], skiprows=3, delimiter=" ", header=None)
        df.columns = ['energy', 'energy_err', 'counts', 'counts_err']

        mi = 0
        for a in ax_list:
            a.errorbar(df['energy'], df['counts'],
                       xerr=df['energy_err'], yerr=df['counts_err'],
                       ls=ls_flat[i], marker=markers[mi], 
                       color=colors_flat[i],
                       label=labels_flat[i])
            mi += 1

    ax.legend(edgecolor='black', fontsize=20)

    for a in ax_list:
        a.set_ylabel(r'Normalized Counts (s$^{-1}$ keV$^{-1}$)', fontsize=20)
        a.set_xscale('log')
        a.set_yscale('log')
        a.set_xlabel('Energy (keV)', fontsize=20)
    ax.xaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f'))
    if two_panel:
        ax1.xaxis.set_minor_formatter(mticker.FormatStrFormatter('%.01f'))
        ax1.set_xlim(left=zoom_left, right=zoom_right)
        ax1.set_ylim(bottom=zoom_bottom, top=zoom_top)

        con1 = ConnectionPatch(xyA=(ax1.get_xlim()[0], ax1.get_ylim()[1]),
                               xyB=(ax1.get_xlim()[0], ax1.get_ylim()[0]),
                               coordsA='data', coordsB='data',
                               axesA=ax1, axesB=ax,
                               color='black', ls='-')

        con2 = ConnectionPatch(xyA=(ax1.get_xlim()[1], ax1.get_ylim()[1]),
                               xyB=(ax1.get_xlim()[1], ax1.get_ylim()[0]),
                               coordsA='data', coordsB='data',
                               axesA=ax1, axesB=ax,
                               color='black', ls='-')


        rect = Rectangle((ax1.get_xlim()[0], ax1.get_ylim()[0]),
                         (ax1.get_xlim()[1]-ax1.get_xlim()[0]),
                         (ax1.get_ylim()[1]-ax1.get_ylim()[0]),
                         facecolor='none', edgecolor='black',
                         alpha=.5)
        ax.add_patch(rect)
        ax1.add_patch(con1)
        ax1.add_patch(con2)

    if savefig is not None:
        fig.savefig(savefig)
        if savefig.endswith('pdf'):
            fig.savefig(savefig.replace('pdf', 'png'))

    else:
        plt.show()