def init_phdiff_wf(reportlets_dir, omp_nthreads, name='phdiff_wf'): """ Estimates the fieldmap using a phase-difference image and one or more magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)` acquisitions. The `original code was taken from nipype <https://github.com/nipy/nipype/blob/master/nipype/workflows/dmri/fsl/artifacts.py#L514>`_. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.fieldmap.phdiff import init_phdiff_wf wf = init_phdiff_wf(reportlets_dir='.', omp_nthreads=1) Outputs:: outputnode.fmap_ref - The average magnitude image, skull-stripped outputnode.fmap_mask - The brain mask applied to the fieldmap outputnode.fmap - The estimated fieldmap in Hz """ inputnode = pe.Node( niu.IdentityInterface(fields=['magnitude', 'phasediff']), name='inputnode') outputnode = pe.Node( niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']), name='outputnode') def _pick1st(inlist): return inlist[0] # Read phasediff echo times meta = pe.Node(ReadSidecarJSON(), name='meta', mem_gb=0.01, run_without_submitting=True) dte = pe.Node(niu.Function(function=_delta_te), name='dte', mem_gb=0.01) # Merge input magnitude images magmrg = pe.Node(IntraModalMerge(), name='magmrg') # de-gradient the fields ("bias/illumination artifact") n4 = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True), name='n4', n_procs=omp_nthreads) bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True), name='bet') ds_fmap_mask = pe.Node(DerivativesDataSink(base_directory=reportlets_dir, suffix='fmap_mask'), name='ds_fmap_mask', mem_gb=0.01, run_without_submitting=True) # uses mask from bet; outputs a mask # dilate = pe.Node(fsl.maths.MathsCommand( # nan2zeros=True, args='-kernel sphere 5 -dilM'), name='MskDilate') # phase diff -> radians pha2rads = pe.Node(niu.Function(function=siemens2rads), name='pha2rads') # FSL PRELUDE will perform phase-unwrapping prelude = pe.Node(fsl.PRELUDE(), name='prelude') denoise = pe.Node(fsl.SpatialFilter(operation='median', kernel_shape='sphere', kernel_size=3), name='denoise') demean = pe.Node(niu.Function(function=demean_image), name='demean') cleanup_wf = cleanup_edge_pipeline(name="cleanup_wf") compfmap = pe.Node(niu.Function(function=phdiff2fmap), name='compfmap') # The phdiff2fmap interface is equivalent to: # rad2rsec (using rads2radsec from nipype.workflows.dmri.fsl.utils) # pre_fugue = pe.Node(fsl.FUGUE(save_fmap=True), name='ComputeFieldmapFUGUE') # rsec2hz (divide by 2pi) workflow = pe.Workflow(name=name) workflow.connect([ (inputnode, meta, [('phasediff', 'in_file')]), (inputnode, magmrg, [('magnitude', 'in_files')]), (magmrg, n4, [('out_avg', 'input_image')]), (n4, prelude, [('output_image', 'magnitude_file')]), (n4, bet, [('output_image', 'in_file')]), (bet, prelude, [('mask_file', 'mask_file')]), (inputnode, pha2rads, [('phasediff', 'in_file')]), (pha2rads, prelude, [('out', 'phase_file')]), (meta, dte, [('out_dict', 'in_values')]), (dte, compfmap, [('out', 'delta_te')]), (prelude, denoise, [('unwrapped_phase_file', 'in_file')]), (denoise, demean, [('out_file', 'in_file')]), (demean, cleanup_wf, [('out', 'inputnode.in_file')]), (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]), (cleanup_wf, compfmap, [('outputnode.out_file', 'in_file')]), (compfmap, outputnode, [('out', 'fmap')]), (bet, outputnode, [('mask_file', 'fmap_mask'), ('out_file', 'fmap_ref')]), (inputnode, ds_fmap_mask, [('phasediff', 'source_file')]), (bet, ds_fmap_mask, [('out_report', 'in_file')]), ]) return workflow
def init_fmap_wf(reportlets_dir, omp_nthreads, fmap_bspline, name='fmap_wf'): """ Fieldmap workflow - when we have a sequence that directly measures the fieldmap we just need to mask it (using the corresponding magnitude image) to remove the noise in the surrounding air region, and ensure that units are Hz. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.fieldmap.fmap import init_fmap_wf wf = init_fmap_wf(reportlets_dir='.', omp_nthreads=6, fmap_bspline=False) """ workflow = pe.Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface( fields=['magnitude', 'fieldmap']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']), name='outputnode') # Merge input magnitude images magmrg = pe.Node(IntraModalMerge(), name='magmrg') # Merge input fieldmap images fmapmrg = pe.Node(IntraModalMerge(zero_based_avg=False, hmc=False), name='fmapmrg') # de-gradient the fields ("bias/illumination artifact") n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True), name='n4_correct') bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True), name='bet') ds_fmap_mask = pe.Node( DerivativesDataSink(base_directory=reportlets_dir, suffix='fmap_mask'), name='ds_fmap_mask') workflow.connect([ (inputnode, magmrg, [('magnitude', 'in_files')]), (inputnode, fmapmrg, [('fieldmap', 'in_files')]), (magmrg, n4_correct, [('out_file', 'input_image')]), (n4_correct, bet, [('output_image', 'in_file')]), (bet, outputnode, [('mask_file', 'fmap_mask'), ('out_file', 'fmap_ref')]), (inputnode, ds_fmap_mask, [('fieldmap', 'source_file')]), (bet, ds_fmap_mask, [('out_report', 'in_file')]), ]) if fmap_bspline: # despike_threshold=1.0, mask_erode=1), fmapenh = pe.Node(FieldEnhance( unwrap=False, despike=False, njobs=omp_nthreads), name='fmapenh') fmapenh.interface.num_threads = omp_nthreads fmapenh.interface.estimated_memory_gb = 4 workflow.connect([ (bet, fmapenh, [('mask_file', 'in_mask'), ('out_file', 'in_magnitude')]), (fmapmrg, fmapenh, [('out_file', 'in_file')]), (fmapenh, outputnode, [('out_file', 'fmap')]), ]) else: torads = pe.Node(niu.Function(output_names=['out_file', 'cutoff_hz'], function=_torads), name='torads') prelude = pe.Node(fsl.PRELUDE(), name='prelude') tohz = pe.Node(niu.Function(function=_tohz), name='tohz') denoise = pe.Node(fsl.SpatialFilter(operation='median', kernel_shape='sphere', kernel_size=3), name='denoise') demean = pe.Node(niu.Function(function=demean_image), name='demean') cleanup_wf = cleanup_edge_pipeline(name='cleanup_wf') applymsk = pe.Node(ApplyMask(), name='applymsk') workflow.connect([ (bet, prelude, [('mask_file', 'mask_file'), ('out_file', 'magnitude_file')]), (fmapmrg, torads, [('out_file', 'in_file')]), (torads, tohz, [('cutoff_hz', 'cutoff_hz')]), (torads, prelude, [('out_file', 'phase_file')]), (prelude, tohz, [('unwrapped_phase_file', 'in_file')]), (tohz, denoise, [('out', 'in_file')]), (denoise, demean, [('out_file', 'in_file')]), (demean, cleanup_wf, [('out', 'inputnode.in_file')]), (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]), (cleanup_wf, applymsk, [('outputnode.out_file', 'in_file')]), (bet, applymsk, [('mask_file', 'in_mask')]), (applymsk, outputnode, [('out_file', 'fmap')]), ]) return workflow