Example #1
0
def Tmx_pcolormesh(ax,
                   x,
                   y,
                   z,
                   cmap=dk_ctables.cm_temp(),
                   transform=ccrs.PlateCarree(),
                   vmin=-45,
                   vmax=45,
                   alpha=0.5,
                   **kwargs):
    img = ax.pcolormesh(x,
                        y,
                        z,
                        cmap=cmap,
                        transform=transform,
                        alpha=0.5,
                        vmin=-45,
                        vmax=45,
                        **kwargs)

    return img
def draw_wind_temp_according_to_4D_data(sta_fcs_fcst=None,
                                        zd_fcst_obs=None,
                                        fcst_info=None,
                                        map_extent=(50, 150, 0, 65),
                                        bkgd_type='satellite',
                                        bkgd_level=None,
                                        draw_zd=True,
                                        output_dir=None):

    # set font
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 步骤一(替换sans-serif字体)
    plt.rcParams['axes.unicode_minus'] = False  # 步骤二(解决坐标轴负数的负号显示问题)
    # set figure
    plt.figure(figsize=(16, 9))

    plotcrs = ccrs.PlateCarree()
    ax = plt.axes([0.01, 0.1, .98, .84], projection=plotcrs)
    if (bkgd_type == 'satellite'):
        c_city_names = 'black'
        c_sta_fcst = 'black'
        c_tile_str = '白色'
    else:
        c_city_names = 'black'
        c_sta_fcst = 'black'
        c_tile_str = '黑色'

    datacrs = ccrs.PlateCarree()

    ax.set_extent(map_extent, crs=datacrs)

    # draw data
    plots = {}

    if (bkgd_type == 'satellite'):
        request = utl.TDT_img()  #卫星图像
    if (bkgd_type == 'terrain'):
        request = utl.TDT_ter()  #卫星图像
    if (bkgd_type == 'road'):
        request = utl.TDT()  #卫星图像

    ax.add_image(request, bkgd_level)  # level=10 缩放等级

    #cmap=dk_ctables.cm_thetae()
    plots['t2m'] = ax.scatter(sta_fcs_fcst['lon'],
                              sta_fcs_fcst['lat'],
                              s=1900,
                              c='white',
                              alpha=1,
                              zorder=120)
    cmap = dk_ctables.cm_temp()
    cmap.set_under(color=[0, 0, 0, 0], alpha=0.0)
    plots['t2m'] = ax.scatter(sta_fcs_fcst['lon'],
                              sta_fcs_fcst['lat'],
                              s=1700,
                              c=sta_fcs_fcst['TMP'],
                              vmin=-40,
                              vmax=40,
                              cmap=cmap,
                              alpha=1,
                              zorder=120)

    for ista in range(0, len(sta_fcs_fcst['lon'])):
        city_names = sta_fcs_fcst['name'][ista]
        ax.text(sta_fcs_fcst['lon'][ista] - 0.001,
                sta_fcs_fcst['lat'][ista],
                city_names + '  ',
                family='SimHei',
                ha='right',
                va='center',
                size=24,
                color=c_city_names,
                zorder=140)
        ax.text(sta_fcs_fcst['lon'][ista],
                sta_fcs_fcst['lat'][ista],
                '%i' % sta_fcs_fcst['TMP'][ista],
                family='SimHei',
                size=24,
                color='white',
                zorder=140,
                ha='center',
                va='center')
    plots['uv'] = ax.barbs(np.array(sta_fcs_fcst['lon']) - 0.001,
                           np.array(sta_fcs_fcst['lat']),
                           sta_fcs_fcst['U'],
                           sta_fcs_fcst['V'],
                           barb_increments={
                               'half': 2,
                               'full': 4,
                               'flag': 20
                           },
                           length=12,
                           linewidth=6,
                           transform=datacrs,
                           fill_empty=False,
                           sizes=dict(emptybarb=0.01),
                           zorder=130,
                           color='white')

    plots['uv'] = ax.barbs(np.array(sta_fcs_fcst['lon']) - 0.001,
                           np.array(sta_fcs_fcst['lat']),
                           sta_fcs_fcst['U'],
                           sta_fcs_fcst['V'],
                           barb_increments={
                               'half': 2,
                               'full': 4,
                               'flag': 20
                           },
                           length=12,
                           linewidth=3,
                           transform=datacrs,
                           fill_empty=False,
                           sizes=dict(emptybarb=0.01),
                           zorder=130,
                           color='black')

    if (draw_zd is True):
        plots['uv'] = ax.barbs(zd_fcst_obs['lon'],
                               zd_fcst_obs['lat'],
                               zd_fcst_obs['U'],
                               zd_fcst_obs['V'],
                               barb_increments={
                                   'half': 2,
                                   'full': 4,
                                   'flag': 20
                               },
                               length=10,
                               linewidth=2.6,
                               transform=datacrs,
                               fill_empty=False,
                               sizes=dict(emptybarb=0.01),
                               zorder=100,
                               color=c_sta_fcst,
                               alpha=1)

        if (zd_fcst_obs['obs_valid'] is True):
            plots['uv'] = ax.barbs(zd_fcst_obs['lon'],
                                   zd_fcst_obs['lat'],
                                   zd_fcst_obs['U_obs'],
                                   zd_fcst_obs['V_obs'],
                                   barb_increments={
                                       'half': 2,
                                       'full': 4,
                                       'flag': 20
                                   },
                                   length=10,
                                   linewidth=2,
                                   transform=datacrs,
                                   fill_empty=False,
                                   sizes=dict(emptybarb=0.01),
                                   zorder=100,
                                   color='red',
                                   alpha=1)

#additional information
    plt.title('基于EC模式降尺度预报 ' + '10米风(红色实况,' + c_tile_str + '预报), ' +
              '温度(圆形填色及数字)',
              loc='left',
              fontsize=20)

    l, b, w, h = ax.get_position().bounds

    bax = plt.axes([l, b + h - 0.1, .25, .1], facecolor='#FFFFFFCC')
    bax.set_yticks([])
    bax.set_xticks([])
    bax.axis([0, 10, 0, 10])

    initial_time = pd.to_datetime(
        str(fcst_info['forecast_reference_time'].values)).replace(
            tzinfo=None).to_pydatetime()
    fcst_time = initial_time + timedelta(
        hours=fcst_info['forecast_period'].values[0])
    #发布时间
    if (sys.platform[0:3] == 'lin'):
        locale.setlocale(locale.LC_CTYPE, 'zh_CN')
    if (sys.platform[0:3] == 'win'):
        locale.setlocale(locale.LC_CTYPE, 'chinese')
    plt.text(2.5,
             7.5,
             '起报时间: ' + initial_time.strftime("%Y年%m月%d日%H时"),
             size=15)
    plt.text(2.5, 5, '预报时间: ' + fcst_time.strftime("%Y年%m月%d日%H时"), size=15)
    plt.text(2.5,
             2.5,
             '预报时效: ' + str(int(fcst_info['forecast_period'].values)) + '小时',
             size=15)
    plt.text(2.5, 0.5, 'www.nmc.cn', size=15)

    # add logo
    utl.add_logo_extra_in_axes(pos=[l - 0.02, b + h - 0.1, .1, .1],
                               which='nmc',
                               size='Xlarge')

    # add color bar
    cax = plt.axes([0.25, 0.06, .5, .02])
    cb = plt.colorbar(plots['t2m'], cax=cax, orientation='horizontal')
    cb.ax.tick_params(labelsize='x-large')
    cb.set_label('温度 ($^\circ$C)', size=20)

    # show figure
    if (output_dir != None):
        plt.savefig(output_dir + 'BSEP_NMC_RFFC_ECMWF_EME_ASC_LNO_P9_' +
                    initial_time.strftime("%Y%m%d%H") + '00' +
                    str(int(fcst_info['forecast_period'].values[0])).zfill(3) +
                    '03.jpg',
                    dpi=200,
                    bbox_inches='tight')

    if (output_dir == None):
        plt.show()
Example #3
0
def draw_gh_uv_tmp(gh=None,
                   uv=None,
                   tmp=None,
                   map_extent=(50, 150, 0, 65),
                   regrid_shape=20,
                   add_china=True,
                   city=True,
                   south_China_sea=True,
                   output_dir=None,
                   Global=False):
    # set font
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 步骤一(替换sans-serif字体)
    plt.rcParams['axes.unicode_minus'] = False  # 步骤二(解决坐标轴负数的负号显示问题)
    # set figure
    plt.figure(figsize=(16, 9))

    if (Global == True):
        plotcrs = ccrs.Robinson(central_longitude=115.)
    else:
        plotcrs = ccrs.AlbersEqualArea(
            central_latitude=(map_extent[2] + map_extent[3]) / 2.,
            central_longitude=(map_extent[0] + map_extent[1]) / 2.,
            standard_parallels=[30., 60.])

    datacrs = ccrs.PlateCarree()

    ax = plt.axes([0.01, 0.1, .98, .84], projection=plotcrs)
    map_extent2 = utl.adjust_map_ratio(ax,
                                       map_extent=map_extent,
                                       datacrs=datacrs)

    #draw data
    # define plots
    plots = {}
    # draw mean sea level pressure
    if tmp is not None:
        x, y = np.meshgrid(tmp['lon'], tmp['lat'])
        z = np.squeeze(tmp['data'])
        cmap = dk_ctables.cm_temp()
        cmap.set_under(color=[0, 0, 0, 0], alpha=0.0)
        plots['tmp'] = ax.pcolormesh(x,
                                     y,
                                     z,
                                     cmap=cmap,
                                     zorder=1,
                                     transform=datacrs,
                                     alpha=0.5)

        plots['tmp_contour'] = ax.contour(x,
                                          y,
                                          z,
                                          levels=[-4],
                                          colors='red',
                                          linewidth=8,
                                          zorder=4,
                                          transform=datacrs,
                                          alpha=1,
                                          linestyles='solid')
        plt.clabel(plots['tmp_contour'],
                   inline=1,
                   fontsize=25,
                   fmt='%.0f',
                   colors='red')
    # draw -hPa wind bards
    if uv is not None:
        x, y = np.meshgrid(uv['lon'], uv['lat'])
        u = np.squeeze(uv['u']) * 2.5
        v = np.squeeze(uv['v']) * 2.5
        plots['uv'] = ax.barbs(x,
                               y,
                               u.values,
                               v.values,
                               length=6,
                               regrid_shape=regrid_shape,
                               transform=datacrs,
                               fill_empty=False,
                               sizes=dict(emptybarb=0.05),
                               zorder=2,
                               color='white')

    # draw -hPa geopotential height
    if gh is not None:
        x, y = np.meshgrid(gh['lon'], gh['lat'])
        clevs_gh = np.append(
            np.append(
                np.arange(0, 480, 4),
                np.append(np.arange(480, 584, 8), np.arange(580, 604, 4))),
            np.arange(604, 2000, 8))
        plots['gh'] = ax.contour(x,
                                 y,
                                 np.squeeze(gh['data']),
                                 clevs_gh,
                                 colors='black',
                                 linewidths=2,
                                 transform=datacrs,
                                 zorder=3)
        plt.clabel(plots['gh'],
                   inline=1,
                   fontsize=20,
                   fmt='%.0f',
                   colors='black')


#additional information
    plt.title('[' + gh.attrs['model'] + '] ' +
              str(int(gh['level'].values[0])) + 'hPa 位势高度场, ' +
              str(int(uv['level'].values[0])) + 'hPa 风场, ' +
              str(int(tmp['level'].values[0])) + 'hPa 温度',
              loc='left',
              fontsize=30)

    ax.add_feature(cfeature.OCEAN)
    utl.add_china_map_2cartopy_public(ax,
                                      name='coastline',
                                      edgecolor='gray',
                                      lw=0.8,
                                      zorder=5,
                                      alpha=0.5)
    if add_china:
        utl.add_china_map_2cartopy_public(ax,
                                          name='province',
                                          edgecolor='gray',
                                          lw=0.5,
                                          zorder=5)
        utl.add_china_map_2cartopy_public(ax,
                                          name='nation',
                                          edgecolor='black',
                                          lw=0.8,
                                          zorder=5)
        utl.add_china_map_2cartopy_public(ax,
                                          name='river',
                                          edgecolor='#74b9ff',
                                          lw=0.8,
                                          zorder=5,
                                          alpha=0.5)

    # grid lines
    gl = ax.gridlines(crs=datacrs,
                      linewidth=2,
                      color='gray',
                      alpha=0.5,
                      linestyle='--',
                      zorder=4)
    gl.xlocator = mpl.ticker.FixedLocator(np.arange(0, 360, 15))
    gl.ylocator = mpl.ticker.FixedLocator(np.arange(-90, 90, 15))

    utl.add_cartopy_background(ax, name='RD')

    #forecast information
    l, b, w, h = ax.get_position().bounds

    #forecast information
    bax = plt.axes([l, b + h - 0.1, .25, .1], facecolor='#FFFFFFCC')
    bax.set_yticks([])
    bax.set_xticks([])
    bax.axis([0, 10, 0, 10])

    initTime = pd.to_datetime(str(
        gh.coords['forecast_reference_time'].values)).replace(
            tzinfo=None).to_pydatetime()
    fcst_time = initTime + timedelta(
        hours=gh.coords['forecast_period'].values[0])
    #发布时间
    if (sys.platform[0:3] == 'lin'):
        locale.setlocale(locale.LC_CTYPE, 'zh_CN.utf8')
    if (sys.platform[0:3] == 'win'):
        locale.setlocale(locale.LC_CTYPE, 'chinese')
    plt.text(2.5, 7.5, '起报时间: ' + initTime.strftime("%Y年%m月%d日%H时"), size=15)
    plt.text(2.5, 5, '预报时间: ' + fcst_time.strftime("%Y年%m月%d日%H时"), size=15)
    plt.text(2.5,
             2.5,
             '预报时效: ' + str(int(gh.coords['forecast_period'].values[0])) +
             '小时',
             size=15)
    plt.text(2.5, 0.5, 'www.nmc.cn', size=15)

    # add color bar
    if (tmp != None):
        cax = plt.axes([l, b - 0.04, w, .02])
        cb = plt.colorbar(plots['tmp'], cax=cax, orientation='horizontal')
        cb.ax.tick_params(labelsize='x-large')
        cb.set_label('Temperature (' + u'°C' + ')', size=20)

    # add south China sea
    if south_China_sea:
        utl.add_south_China_sea(pos=[l + w - 0.091, b, .1, .2])

    small_city = False
    if (map_extent2[1] - map_extent2[0] < 25):
        small_city = True
    if city:
        utl.add_city_on_map(ax,
                            map_extent=map_extent2,
                            transform=datacrs,
                            zorder=5,
                            size=13,
                            small_city=small_city)

    utl.add_logo_extra_in_axes(pos=[l - 0.02, b + h - 0.1, .1, .1],
                               which='nmc',
                               size='Xlarge')

    # show figure
    if (output_dir != None):
        plt.savefig(output_dir + '高度场_风场_温度_预报_' + '起报时间_' +
                    initTime.strftime("%Y年%m月%d日%H时") + '预报时效_' +
                    str(gh.coords['forecast_period'].values[0]) + '小时' +
                    '.png',
                    dpi=200,
                    bbox_inches='tight')
        plt.close()

    if (output_dir == None):
        plt.show()
Example #4
0
def draw_T_2m(T_2m=None,
              map_extent=(50, 150, 0, 65),
              regrid_shape=20,
              add_china=True,
              city=True,
              south_China_sea=True,
              output_dir=None,
              Global=False):
    # set font
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 步骤一(替换sans-serif字体)
    plt.rcParams['axes.unicode_minus'] = False  # 步骤二(解决坐标轴负数的负号显示问题)

    # set figure
    plt.figure(figsize=(16, 9))

    if (Global == True):
        plotcrs = ccrs.Robinson(central_longitude=115.)
    else:
        plotcrs = ccrs.AlbersEqualArea(
            central_latitude=(map_extent[2] + map_extent[3]) / 2.,
            central_longitude=(map_extent[0] + map_extent[1]) / 2.,
            standard_parallels=[30., 60.])

    ax = plt.axes([0.01, 0.1, .98, .84], projection=plotcrs)
    datacrs = ccrs.PlateCarree()
    map_extent2 = utl.adjust_map_ratio(ax,
                                       map_extent=map_extent,
                                       datacrs=datacrs)

    # define return plots
    plots = {}
    if T_2m is not None:
        x, y = np.meshgrid(T_2m['lon'], T_2m['lat'])
        z = np.squeeze(T_2m['data'])
        cmap = dk_ctables.cm_temp()
        cmap.set_under(color=[0, 0, 0, 0], alpha=0.0)
        plots['T_2m'] = ax.pcolormesh(x,
                                      y,
                                      z,
                                      cmap=cmap,
                                      zorder=1,
                                      transform=datacrs,
                                      alpha=0.5,
                                      vmin=-45,
                                      vmax=45)

        z = gaussian_filter(z, 5)
        plots['T_2m_zero'] = ax.contour(x,
                                        y,
                                        z,
                                        levels=[0],
                                        colors='#232B99',
                                        linewidths=2,
                                        transform=datacrs,
                                        zorder=2)
        cl_zero = plt.clabel(plots['T_2m_zero'],
                             inline=1,
                             fontsize=15,
                             fmt='%i',
                             colors='#232B99')
        for t in cl_zero:
            t.set_path_effects([
                path_effects.Stroke(linewidth=3, foreground='white'),
                path_effects.Normal()
            ])

        plots['T_2m_35'] = ax.contour(x,
                                      y,
                                      z,
                                      levels=[35, 37, 40],
                                      colors=['#FF8F00', '#FF6200', '#FF0000'],
                                      linewidths=2,
                                      transform=datacrs,
                                      zorder=2)
        cl_35 = plt.clabel(plots['T_2m_35'],
                           inline=1,
                           fontsize=15,
                           fmt='%i',
                           colors='#FF0000')
        for t in cl_35:
            t.set_path_effects([
                path_effects.Stroke(linewidth=3, foreground='white'),
                path_effects.Normal()
            ])

    plt.title('[' + T_2m.attrs['model'] + ']' + ' ' + T_2m.attrs['title'],
              loc='left',
              fontsize=30)

    ax.add_feature(cfeature.OCEAN)
    utl.add_china_map_2cartopy_public(ax,
                                      name='coastline',
                                      edgecolor='gray',
                                      lw=0.8,
                                      zorder=4,
                                      alpha=0.5)
    if add_china:
        utl.add_china_map_2cartopy_public(ax,
                                          name='province',
                                          edgecolor='gray',
                                          lw=0.5,
                                          zorder=4)
        utl.add_china_map_2cartopy_public(ax,
                                          name='nation',
                                          edgecolor='black',
                                          lw=0.8,
                                          zorder=4)
        utl.add_china_map_2cartopy_public(ax,
                                          name='river',
                                          edgecolor='#74b9ff',
                                          lw=0.8,
                                          zorder=4,
                                          alpha=0.5)

    # grid lines
    gl = ax.gridlines(crs=datacrs,
                      linewidth=2,
                      color='gray',
                      alpha=0.5,
                      linestyle='--',
                      zorder=5)
    gl.xlocator = mpl.ticker.FixedLocator(np.arange(0, 360, 15))
    gl.ylocator = mpl.ticker.FixedLocator(np.arange(-90, 90, 15))

    utl.add_cartopy_background(ax, name='RD')

    l, b, w, h = ax.get_position().bounds

    #forecast information
    bax = plt.axes([l, b + h - 0.1, .25, .1], facecolor='#FFFFFFCC')
    bax.set_yticks([])
    bax.set_xticks([])
    bax.axis([0, 10, 0, 10])

    initTime = pd.to_datetime(
        str(T_2m.coords['forecast_reference_time'].values)).replace(
            tzinfo=None).to_pydatetime()
    fcst_time = initTime + timedelta(
        hours=T_2m.coords['forecast_period'].values[0])
    #发布时间
    if (sys.platform[0:3] == 'lin'):
        locale.setlocale(locale.LC_CTYPE, 'zh_CN.utf8')
    if (sys.platform[0:3] == 'win'):
        locale.setlocale(locale.LC_CTYPE, 'chinese')
    plt.text(2.5, 7.5, '起报时间: ' + initTime.strftime("%Y年%m月%d日%H时"), size=15)
    plt.text(2.5, 5, '预报时间: ' + fcst_time.strftime("%Y年%m月%d日%H时"), size=15)
    plt.text(2.5,
             2.5,
             '预报时效: ' + str(int(T_2m.coords['forecast_period'].values[0])) +
             '小时',
             size=15)
    plt.text(2.5, 0.5, 'www.nmc.cn', size=15)

    # add color bar
    if (T_2m != None):
        cax = plt.axes([l, b - 0.04, w, .02])
        cb = plt.colorbar(plots['T_2m'], cax=cax, orientation='horizontal')
        cb.ax.tick_params(labelsize='x-large')
        cb.set_label(u'°C', size=20)

    # add south China sea
    if south_China_sea:
        utl.add_south_China_sea(pos=[l + w - 0.091, b, .1, .2])

    small_city = False
    #if(map_extent2[1]-map_extent2[0] < 25):
    #    small_city=True
    #if city:
    utl.add_city_and_number_on_map(ax,
                                   data=T_2m,
                                   map_extent=map_extent2,
                                   transform=datacrs,
                                   zorder=6,
                                   size=13,
                                   small_city=small_city)

    utl.add_logo_extra_in_axes(pos=[l - 0.02, b + h - 0.1, .1, .1],
                               which='nmc',
                               size='Xlarge')

    # show figure
    if (output_dir != None):
        plt.savefig(output_dir + '最低温度_预报_' + '起报时间_' +
                    initTime.strftime("%Y年%m月%d日%H时") + '预报时效_' +
                    str(T_2m.coords['forecast_period'].values[0]) + '小时' +
                    '.png',
                    dpi=200,
                    bbox_inches='tight')
        plt.close()
    if (output_dir == None):
        plt.show()