def gfit1d(y, x=None, err = None, weights=None, par=None, parinfo=None, maxiter=200, quiet=0): """ Return the gaussian fit as an object. Parameters ---------- y: 1D Numarray array The data to be fitted x: 1D Numarray array (optional) The x values of the y array. x and y must have the same shape. err: 1D Numarray array (optional) 1D array with measurement errors, must be the same shape as y weights: 1D Numarray array (optiional) 1D array with weights, must be the same shape as y par: List (optional) Starting values for the parameters to be fitted parinfo: Dictionary of lists (optional) provides additional information for the parameters. For a detailed description see nmpfit.py. Parinfo can be used to limit parameters or keep some of them fixed. maxiter: number Maximum number of iterations to perform Default: 200 quiet: number if set to 1, nmpfit does not print to the screen Default: 0 Examples -------- >>> x=N.arange(10,20, 0.1) >>> y= 10*N.e**(-(x-15)**2/4) >>> print gfit1d(y,x=x, maxiter=20,quiet=1).params [ 10. 15. 1.41421356] """ if numerixenv.check_input(x) or numerixenv.check_input(y): raise ValueError, "Input is a NumArray array. This version of %s requires a Numpy array\n" % __name__ y = y.astype(N.float) if weights != None: weights = weights.astype(N.float) if err != None: err = err.astype(N.float) if x == None and len(y.shape)==1 : x = N.arange(len(y)).astype(N.float) if x.shape != y.shape: print "input arrays X and Y must be of equal shape.\n" return fa = {'x':x, 'y':y, 'err':err, 'weights':weights} if par != None: p = par else: ysigma = y.std() ind = N.nonzero(y > ysigma)[0] if len(ind) != 0: xind = int(ind.mean()) p2 = x[xind] p1 = y[xind] p3 = 1.0 else: ymax = y.max() ymin = y.min() ymean= y.mean() if (ymax - ymean) > (abs(ymin - ymean)): p1 = ymax else: p1 = ymin ind = (N.nonzero(y == p1))[0] p2 = x.mean() p3 = 1. p = [p1, p2, p3] m=nmpfit.mpfit(_gauss_funct, p,parinfo = parinfo, functkw=fa, maxiter=maxiter, quiet=quiet) if (m.status <=0): print 'error message = ', m.errmsg return m
y=nn[nMaxArg-5:nMaxArg+5] #x=bins #y=nn print x.shape, y.shape def g(p,fjac = None, x = None, y=None, err=None,weights=None): if p[2] != 0.0: Z = (x - p[1]) model = p[0]*n.e ** (-Z**2 / (p[2] * p[2] * 2.0)) else: model = N.zeros(N.size(x)) status = 0 # if n.sqrt(y)!=0.0: return [status, (y-model)]#/ (y)] # else: # return [status, (y-model)] fa = {'x':x, 'y':y} m=nmpfit.mpfit(g,p,functkw=fa) p=m.params print p #figure() print p[2] / abs(bins[1] - bins[0]) yy = p[0] * n.e**(-0.5*(bins-p[1])**2/p[2]**2) l=plot(bins, yy, 'b--') setp(l, 'linewidth', 3) grid(1) show()
#x=bins #y=nn print x.shape, y.shape def g(p, fjac=None, x=None, y=None, err=None, weights=None): if p[2] != 0.0: Z = (x - p[1]) model = p[0] * n.e**(-Z**2 / (p[2] * p[2] * 2.0)) else: model = N.zeros(N.size(x)) status = 0 # if n.sqrt(y)!=0.0: return [status, (y - model)] #/ (y)] # else: # return [status, (y-model)] fa = {'x': x, 'y': y} m = nmpfit.mpfit(g, p, functkw=fa) p = m.params print p #figure() print p[2] / abs(bins[1] - bins[0]) yy = p[0] * n.e**(-0.5 * (bins - p[1])**2 / p[2]**2) l = plot(bins, yy, 'b--') setp(l, 'linewidth', 3) grid(1) show()