def setup(self, flags): # Model output directory out_dir = flags.out_dir if out_dir and not tf.gfile.Exists(out_dir): tf.gfile.MakeDirs(out_dir) # Load hparams. default_hparams = create_hparams(flags) loaded_hparams = False if flags.ckpt: # Try to load hparams from the same directory as ckpt ckpt_dir = os.path.dirname(flags.ckpt) ckpt_hparams_file = os.path.join(ckpt_dir, "hparams") if tf.gfile.Exists(ckpt_hparams_file) or flags.hparams_path: # Note: for some reason this will create an empty "best_bleu" directory and copy vocab files hparams = create_or_load_hparams(ckpt_dir, default_hparams, flags.hparams_path, save_hparams=False) loaded_hparams = True assert loaded_hparams # GPU device config_proto = utils.get_config_proto( allow_soft_placement=True, num_intra_threads=hparams.num_intra_threads, num_inter_threads=hparams.num_inter_threads) utils.print_out("# Devices visible to TensorFlow: %s" % repr(tf.Session(config=config_proto).list_devices())) # Inference indices (inference_indices is broken, but without setting it to None we'll crash) hparams.inference_indices = None # Create the graph model_creator = get_model_creator(hparams) infer_model = model_helper.create_infer_model(model_creator, hparams, scope=None) sess, loaded_infer_model = start_sess_and_load_model( infer_model, flags.ckpt, hparams) # Parameters needed by TF GNMT self.hparams = hparams self.infer_model = infer_model self.sess = sess self.loaded_infer_model = loaded_infer_model
def _createTestInferenceCheckpint(self, hparams, name): #Prepare hparams.vocab_prefix = ('nmt/testdata/test_infer_vocab') hparams.src_vocab_file = hparams.vocab_prefix + '.' + hparams.src hparams.tgt_vocab_file = hparams.vocab_prefix + '.' + hparams.tgt out_dir = os.path.join(tf.test.get_temp_dir(), name) os.makedirs(out_dir) hparams.out_dir = out_dir #create check point model_creator = inference.get_model_creator(hparams) infer_model = model_helper.create_infer_model(model_creator, hparams) with self.test_session(graph=infer_model.graph) as sess: loaded_model, global_step = model_helper.create_or_load_model( infer_model.model, out_dir, sess, 'infer_name') ckpt_path = loaded_model.saver.save(sess, os.path.join( out_dir, 'translation.ckpt'), global_step=global_step) return ckpt_path
print(ckpt_path2) hparams1 = create_or_load_hparams(out_dir1, default_hparams1, None, save_hparams=0) hparams2 = create_or_load_hparams(out_dir2, default_hparams2, None, save_hparams=0) hparams1.inference_indices = None hparams2.inference_indices = None model_creator1 = get_model_creator(hparams1) model_creator2 = get_model_creator(hparams2) infer_model1 = create_infer_model(model_creator1, hparams1, None) infer_model2 = create_infer_model(model_creator2, hparams2, None) sess1, loaded_infer_model1 = start_sess_and_load_model(infer_model1, ckpt_path1) sess2, loaded_infer_model2 = start_sess_and_load_model(infer_model2, ckpt_path2) jieba.load_userdict("字典.txt") def is_contains_chinese(strs): for _char in strs:
def setup(self, flags): # Model output directory out_dir = flags.out_dir if out_dir and not tf.gfile.Exists(out_dir): tf.gfile.MakeDirs(out_dir) # Load hparams. default_hparams = create_hparams(flags) loaded_hparams = False if flags.ckpt: # Try to load hparams from the same directory as ckpt ckpt_dir = os.path.dirname(flags.ckpt) ckpt_hparams_file = os.path.join(ckpt_dir, "hparams") if tf.gfile.Exists(ckpt_hparams_file) or flags.hparams_path: # Note: for some reason this will create an empty "best_bleu" directory and copy vocab files hparams = create_or_load_hparams(ckpt_dir, default_hparams, flags.hparams_path, save_hparams=False) loaded_hparams = True assert loaded_hparams # GPU device config_proto = utils.get_config_proto( allow_soft_placement=True, num_intra_threads=hparams.num_intra_threads, num_inter_threads=hparams.num_inter_threads) utils.print_out( "# Devices visible to TensorFlow: %s" % repr(tf.Session(config=config_proto).list_devices())) # Inference indices (inference_indices is broken, but without setting it to None we'll crash) hparams.inference_indices = None # Create the graph model_creator = get_model_creator(hparams) infer_model = model_helper.create_infer_model(model_creator, hparams, scope=None) sess, loaded_infer_model = start_sess_and_load_model(infer_model, flags.ckpt, hparams) # FIXME (bryce): Set to False to disable inference from frozen graph and run fast again if True: frozen_graph = None with infer_model.graph.as_default(): output_node_names = ['hash_table_Lookup_1/LookupTableFindV2'] other_node_names = ['MakeIterator', 'IteratorToStringHandle', 'init_all_tables', 'NoOp', 'dynamic_seq2seq/decoder/NoOp'] frozen_graph = tf.graph_util.convert_variables_to_constants(sess, tf.get_default_graph().as_graph_def(), output_node_names=output_node_names + other_node_names) # FIXME (bryce): Uncomment this block to enable tensorRT convert from tensorflow.python.compiler.tensorrt import trt_convert as trt converter = trt.TrtGraphConverter(input_graph_def=frozen_graph, nodes_blacklist=(output_node_names), is_dynamic_op=True, max_batch_size=hparams.infer_batch_size, max_beam_size=hparams.beam_width, max_src_seq_len=hparams.src_max_len) frozen_graph = converter.convert() with tf.Graph().as_default(): tf.graph_util.import_graph_def(frozen_graph, name="") sess = tf.Session(graph=tf.get_default_graph(), config=utils.get_config_proto( num_intra_threads=hparams.num_intra_threads, num_inter_threads=hparams.num_inter_threads) ) iterator = iterator_utils.BatchedInput( initializer=tf.get_default_graph().get_operation_by_name(infer_model.iterator.initializer.name), source=tf.get_default_graph().get_tensor_by_name(infer_model.iterator.source.name), target_input=None, target_output=None, source_sequence_length=tf.get_default_graph().get_tensor_by_name(infer_model.iterator.source_sequence_length.name), target_sequence_length=None) infer_model = model_helper.InferModel( graph=tf.get_default_graph(), model=infer_model.model, src_placeholder=tf.get_default_graph().get_tensor_by_name(infer_model.src_placeholder.name), batch_size_placeholder=tf.get_default_graph().get_tensor_by_name(infer_model.batch_size_placeholder.name), iterator=iterator) # Parameters needed by TF GNMT self.hparams = hparams self.infer_model = infer_model self.sess = sess self.loaded_infer_model = loaded_infer_model