def main(flags): nn_utils.set_gpu(GPU) # define network model = deeplab.DeepLab(flags.num_classes, flags.patch_size, suffix=flags.model_suffix, learn_rate=flags.learning_rate, decay_step=flags.decay_step, decay_rate=flags.decay_rate, epochs=flags.epochs, batch_size=flags.batch_size) overlap = model.get_overlap() cm = collectionMaker.read_collection( raw_data_path=flags.data_dir, field_name='austin,chicago,kitsap,tyrol-w,vienna', field_id=','.join(str(i) for i in range(37)), rgb_ext='RGB', gt_ext='GT', file_ext='tif', force_run=False, clc_name=flags.ds_name) gt_d255 = collectionEditor.SingleChanMult(cm.clc_dir, 1 / 255, ['GT', 'gt_d255']). \ run(force_run=False, file_ext='png', d_type=np.uint8, ) cm.replace_channel(gt_d255.files, True, ['GT', 'gt_d255']) cm.print_meta_data() file_list_train = cm.load_files(field_id=','.join( str(i) for i in range(6, 37)), field_ext='RGB,gt_d255') file_list_valid = cm.load_files(field_id=','.join( str(i) for i in range(6)), field_ext='RGB,gt_d255') chan_mean = cm.meta_data['chan_mean'][:3] patch_list_train = patchExtractor.PatchExtractor(flags.patch_size, flags.tile_size, flags.ds_name + '_train', overlap, overlap // 2). \ run(file_list=file_list_train, file_exts=['jpg', 'png'], force_run=False).get_filelist() patch_list_valid = patchExtractor.PatchExtractor(flags.patch_size, flags.tile_size, flags.ds_name + '_valid', overlap, overlap // 2). \ run(file_list=file_list_valid, file_exts=['jpg', 'png'], force_run=False).get_filelist() train_init_op, valid_init_op, reader_op = \ dataReaderSegmentation.DataReaderSegmentationTrainValid( flags.patch_size, patch_list_train, patch_list_valid, batch_size=flags.batch_size, chan_mean=chan_mean, aug_func=[reader_utils.image_flipping, reader_utils.image_rotating], random=True, has_gt=True, gt_dim=1, include_gt=True, valid_mult=flags.val_mult).read_op() feature, label = reader_op model.create_graph(feature) model.load_resnet(flags.res_dir) model.compile(feature, label, flags.n_train, flags.n_valid, flags.patch_size, ersaPath.PATH['model'], par_dir=flags.model_par_dir, val_mult=flags.val_mult, loss_type='xent') train_hook = hook.ValueSummaryHook( flags.verb_step, [model.loss, model.lr_op], value_names=['train_loss', 'learning_rate'], print_val=[0]) model_save_hook = hook.ModelSaveHook( model.get_epoch_step() * flags.save_epoch, model.ckdir) valid_loss_hook = hook.ValueSummaryHook( model.get_epoch_step(), [model.loss, model.loss_iou], value_names=['valid_loss', 'valid_mIoU'], log_time=True, run_time=model.n_valid, iou_pos=1) image_hook = hook.ImageValidSummaryHook(model.input_size, model.get_epoch_step(), feature, label, model.output, nn_utils.image_summary, img_mean=cm.meta_data['chan_mean']) start_time = time.time() model.train(train_hooks=[train_hook, model_save_hook], valid_hooks=[valid_loss_hook, image_hook], train_init=train_init_op, valid_init=valid_init_op) print('Duration: {:.3f}'.format((time.time() - start_time) / 3600))
def main(flags): nn_utils.set_gpu(GPU) # define network model = deeplab.DeepLab(flags.num_classes, flags.tile_size, suffix=flags.model_suffix, learn_rate=flags.learning_rate, decay_step=flags.decay_step, decay_rate=flags.decay_rate, epochs=flags.epochs, batch_size=flags.batch_size) cm_train = cityscapes_reader.CollectionMakerCityscapes( flags.data_dir, flags.rgb_type, flags.gt_type, 'train', flags.rgb_ext, flags.gt_ext, ['png', 'png'], clc_name='{}_train'.format(flags.ds_name), force_run=flags.force_run) cm_valid = cityscapes_reader.CollectionMakerCityscapes( flags.data_dir, flags.rgb_type, flags.gt_type, 'val', flags.rgb_ext, flags.gt_ext, ['png', 'png'], clc_name='{}_valid'.format(flags.ds_name), force_run=flags.force_run) cm_train.print_meta_data() cm_valid.print_meta_data() resize_func = lambda img: resize_image(img, flags.tile_size) train_init_op, valid_init_op, reader_op = dataReaderSegmentation.DataReaderSegmentationTrainValid( flags.tile_size, cm_train.meta_data['file_list'], cm_valid.meta_data['file_list'], flags.batch_size, cm_train.meta_data['chan_mean'], aug_func=[reader_utils.image_flipping_hori, reader_utils.image_scaling_with_label], random=True, has_gt=True, gt_dim=1, include_gt=True, valid_mult=flags.val_mult, global_func=resize_func)\ .read_op() feature, label = reader_op model.create_graph(feature) model.load_resnet(flags.res_dir) model.compile(feature, label, flags.n_train, flags.n_valid, flags.tile_size, ersaPath.PATH['model'], par_dir=flags.model_par_dir, val_mult=flags.val_mult, loss_type='xent') train_hook = hook.ValueSummaryHook( flags.verb_step, [model.loss, model.lr_op], value_names=['train_loss', 'learning_rate'], print_val=[0]) model_save_hook = hook.ModelSaveHook( model.get_epoch_step() * flags.save_epoch, model.ckdir) valid_loss_hook = hook.ValueSummaryHook( model.get_epoch_step(), [model.loss, model.loss_iou], value_names=['valid_loss', 'valid_mIoU'], log_time=True, run_time=model.n_valid, iou_pos=1) image_hook = hook.ImageValidSummaryHook( model.input_size, model.get_epoch_step(), feature, label, model.pred, cityscapes_labels.image_summary, img_mean=cm_train.meta_data['chan_mean']) start_time = time.time() model.train(train_hooks=[train_hook, model_save_hook], valid_hooks=[valid_loss_hook, image_hook], train_init=train_init_op, valid_init=valid_init_op) print('Duration: {:.3f}'.format((time.time() - start_time) / 3600))
# settings class_num = 2 tile_size = (5000, 5000) suffix = 'aemo_hist' bs = 5 gpu = 0 model_name = 'unet' # define network if model_name == 'unet': patch_size = (572, 572) unet = unet.UNet(class_num, patch_size, suffix=suffix, batch_size=bs) else: patch_size = (321, 321) unet = deeplab.DeepLab(class_num, patch_size, suffix=suffix, batch_size=bs) overlap = unet.get_overlap() cm = collectionMaker.read_collection( raw_data_path=r'/home/lab/Documents/bohao/data/aemo/aemo_hist', field_name='aus10,aus30,aus50', field_id='', rgb_ext='.*rgb', gt_ext='.*gt', file_ext='tif', force_run=False, clc_name=suffix) cm.print_meta_data() file_list_train = cm.load_files(field_name='aus10,aus30', field_id='',
def main(flags): nn_utils.set_gpu(GPU) # define network model = deeplab.DeepLab(flags.num_classes, flags.tile_size, batch_size=flags.batch_size) cm_train = cityscapes_reader.CollectionMakerCityscapes( flags.data_dir, flags.rgb_type, flags.gt_type, 'train', flags.rgb_ext, flags.gt_ext, ['png', 'png'], clc_name='{}_train'.format(flags.ds_name), force_run=False) cm_test = cityscapes_reader.CollectionMakerCityscapes( flags.data_dir, flags.rgb_type, flags.gt_type, 'val', flags.rgb_ext, flags.gt_ext, ['png', 'png'], clc_name='{}_valid'.format(flags.ds_name), force_run=False) cm_test.print_meta_data() resize_func_train = lambda img: skimage.transform.resize( img, flags.tile_size, mode='reflect') resize_func_test = lambda img: skimage.transform.resize( img, cm_test.meta_data['tile_dim'], order=0, preserve_range=True, mode='reflect') init_op, reader_op = dataReaderSegmentation.DataReaderSegmentation( flags.tile_size, cm_test.meta_data['file_list'], batch_size=flags.batch_size, random=False, chan_mean=cm_train.meta_data['chan_mean'], is_train=False, has_gt=True, gt_dim=1, include_gt=True, global_func=resize_func_train).read_op() estimator = nn_processor.NNEstimatorSegmentScene( model, cm_test.meta_data['file_list'], flags.res_dir, init_op, reader_op, ds_name='city_scapes', save_result_parent_dir='Cityscapes', gpu=flags.GPU, score_result=True, split_char='.', post_func=resize_func_test, save_func=make_general_id_map, ignore_label=(-1, 255)) estimator.run(force_run=flags.force_run)
verb_step = 50 save_epoch = 50 model_dir = r'/hdd6/Models/DeepLab_rand_grid/DeeplabV3_spca_aug_grid_0_PS(321, 321)_BS5_EP60_LR0.0001_DS40_DR0.1_SFN32' nn_utils.set_gpu(gpu) np.random.seed(1004) tf.set_random_seed(1004) if use_hist: suffix += '_hist' # define network unet = deeplab.DeepLab(class_num, patch_size, suffix=suffix, learn_rate=lr, decay_step=ds, decay_rate=dr, epochs=epochs, batch_size=bs) overlap = unet.get_overlap() cm = collectionMaker.read_collection( raw_data_path=r'/home/lab/Documents/bohao/data/aemo/aemo_pad', field_name='aus10,aus30,aus50', field_id='', rgb_ext='.*rgb', gt_ext='.*gt', file_ext='tif', force_run=False, clc_name=ds_name) gt_d255 = collectionEditor.SingleChanMult(cm.clc_dir, 1/255, ['.*gt', 'gt_d255']).\