sess_input = [model.final_boxes, model.final_labels, model.final_probs] final_boxes, final_labels, final_probs = sess.run( sess_input, feed_dict=feed_dict) if args.out_dir is None: cur_frame += 1 continue # ---------------- get the json outputs for object detection # scale back the box to original image size final_boxes = final_boxes / scale if args.add_mask: final_masks = [fill_full_mask(box, mask, im.shape[:2]) for box, mask in zip(final_boxes, final_masks)] # save as json pred = [] for j, (box, prob, label) in enumerate(zip( final_boxes, final_probs, final_labels)): box[2] -= box[0] box[3] -= box[1] # produce x,y,w,h output cat_id = int(label) cat_name = targetid2class[cat_id] # encode mask rle = None
final_labels[i] = coco_obj_class_to_id[ args.partial_classes[final_labels[i] - 1]] else: # 1-90 to 1-80 for i in range(len(final_labels)): final_labels[i] = \ coco_obj_class_to_id[coco_id_mapping[final_labels[i]]] # ---------------- get the json outputs for object detection # scale back the box to original image size final_boxes = final_boxes / scale if args.add_mask: final_masks = [ fill_full_mask(box, mask, im.shape[:2]) for box, mask in zip(final_boxes, final_masks) ] # save as json pred = [] for j, (box, prob, label) in enumerate( zip(final_boxes, final_probs, final_labels)): box[2] -= box[0] box[3] -= box[1] # produce x,y,w,h output cat_id = int(label) cat_name = targetid2class[cat_id] # encode mask
if args.add_mask: sess_input = [model.final_boxes, model.final_labels, model.final_probs, model.final_masks] final_boxes, final_labels, final_probs, final_masks = sess.run(sess_input, feed_dict=feed_dict) else: sess_input = [model.final_boxes, model.final_labels, model.final_probs] final_boxes, final_labels, final_probs = sess.run(sess_input, feed_dict=feed_dict) if args.out_dir is None: cur_frame += 1 continue # scale back the box to original image size final_boxes = final_boxes / scale if args.add_mask: final_masks = [fill_full_mask(box, mask, im.shape[:2]) for box, mask in zip(final_boxes, final_masks)] # save as json pred = [] for j, (box, prob, label) in enumerate(zip(final_boxes, final_probs, final_labels)): box[2] -= box[0] box[3] -= box[1] # produce x,y,w,h output cat_id = label cat_name = targetid2class[cat_id] # encode mask rle = None if args.add_mask: