Example #1
0
def AlexNet(b):
    # 4D input image tensor with dimensions bx3x227x227
    img = nn_ops.InputTensor((b, 3, 227, 227))

    # Conv1 + relu + maxpool
    # Conv input parameters: image, filter dimensions, stride, padding,
    # no. of pointwise operations that follow the convolution.
    # Pooling input parameters: image, filter dimensions, stride, padding
    conv1 = nn_ops.Conv(img, (96, 3, 11, 11), stride=4, pw_op_cnt=1)
    pool1 = nn_ops.Pooling(conv1.GetOutTensor(0), (3, 3), stride=2)

    # Conv2 + relu + maxpool
    conv2 = nn_ops.Conv(pool1.GetOutTensor(0), (256, 96, 5, 5),
                        pad=2,
                        pw_op_cnt=1)
    pool2 = nn_ops.Pooling(conv2.GetOutTensor(0), (3, 3), stride=2)

    # Conv3 + relu
    conv3 = nn_ops.Conv(pool2.GetOutTensor(0), (384, 256, 3, 3),
                        stride=1,
                        pad=1,
                        pw_op_cnt=1)

    # Conv4 + relu
    conv4 = nn_ops.Conv(conv3.GetOutTensor(0), (384, 384, 3, 3),
                        stride=1,
                        pad=1,
                        pw_op_cnt=1)

    # Conv5 + relu + maxpool
    conv5 = nn_ops.Conv(conv4.GetOutTensor(0), (256, 384, 3, 3),
                        stride=1,
                        pad=1,
                        pw_op_cnt=1)
    pool5 = nn_ops.Pooling(conv5.GetOutTensor(0), (3, 3), stride=2)

    # Reshape
    reshape = nn_ops.Reshape(pool5.GetOutTensor(0), (b, 256 * 6 * 6))

    # FC6 + relu
    fc6 = nn_ops.FC(reshape.GetOutTensor(0), 4096, pw_op_cnt=1)

    # FC7 + relu
    fc7 = nn_ops.FC(fc6.GetOutTensor(0), 4096, pw_op_cnt=1)

    # FC8
    fc8 = nn_ops.FC(fc7.GetOutTensor(0), 1024)

    # Softmax + cross-entropy loss
    loss = nn_ops.SoftmaxCrossEntropy(fc8.GetOutTensor(0))

    return nn_ops.Ops.G
Example #2
0
    def Bottleneck(img, inplanes, planes, stride=1, downsample=None):
        identity = img

        conv1 = nn_ops.Conv(img, (planes, inplanes, 1, 1))
        bn1 = nn_ops.BatchNorm(conv1.GetOutTensor(0))

        conv2 = nn_ops.Conv(bn1.GetOutTensor(0), (planes, planes, 3, 3),
                            stride=stride,
                            pad=1)
        bn2 = nn_ops.BatchNorm(conv2.GetOutTensor(0))

        conv3 = nn_ops.Conv(bn2.GetOutTensor(0),
                            (planes * expansion, planes, 1, 1))
        bn3 = nn_ops.BatchNorm(conv3.GetOutTensor(0))

        if downsample is not None:
            identity = downsample(img)

        out = nn_ops.Elementwise(bn3.GetOutTensor(0), identity, pw_op_cnt=1)
        return out
Example #3
0
    def MakeLayer(img, planes, blocks, stride=1):
        downsample = None
        nonlocal inplanes

        if stride != 1 or inplanes != planes * expansion:
            downsample = lambda x: nn_ops.BatchNorm(
                nn_ops.Conv(x, (planes * expansion, inplanes, 1, 1),
                            stride=stride).GetOutTensor(0)).GetOutTensor(0)

        layers = Bottleneck(img, inplanes, planes, stride, downsample)
        inplanes = planes * expansion
        for _ in range(1, blocks):
            layers = Bottleneck(layers.GetOutTensor(0), inplanes, planes)

        return layers
Example #4
0
def ResNet101(b):
    img = nn_ops.InputTensor((b, 3, 227, 227))
    layers = (3, 4, 23, 3)

    num_classes = 1000
    expansion = 4
    inplanes = 64

    # Bottleneck connections architecture
    def Bottleneck(img, inplanes, planes, stride=1, downsample=None):
        identity = img

        conv1 = nn_ops.Conv(img, (planes, inplanes, 1, 1))
        bn1 = nn_ops.BatchNorm(conv1.GetOutTensor(0))

        conv2 = nn_ops.Conv(bn1.GetOutTensor(0), (planes, planes, 3, 3),
                            stride=stride,
                            pad=1)
        bn2 = nn_ops.BatchNorm(conv2.GetOutTensor(0))

        conv3 = nn_ops.Conv(bn2.GetOutTensor(0),
                            (planes * expansion, planes, 1, 1))
        bn3 = nn_ops.BatchNorm(conv3.GetOutTensor(0))

        if downsample is not None:
            identity = downsample(img)

        out = nn_ops.Elementwise(bn3.GetOutTensor(0), identity, pw_op_cnt=1)
        return out

    def MakeLayer(img, planes, blocks, stride=1):
        downsample = None
        nonlocal inplanes

        if stride != 1 or inplanes != planes * expansion:
            downsample = lambda x: nn_ops.BatchNorm(
                nn_ops.Conv(x, (planes * expansion, inplanes, 1, 1),
                            stride=stride).GetOutTensor(0)).GetOutTensor(0)

        layers = Bottleneck(img, inplanes, planes, stride, downsample)
        inplanes = planes * expansion
        for _ in range(1, blocks):
            layers = Bottleneck(layers.GetOutTensor(0), inplanes, planes)

        return layers

    # Conv1 + bn + relu + maxpool
    conv1 = nn_ops.Conv(img, (64, 3, 7, 7), stride=2, pad=3)
    bn1 = nn_ops.BatchNorm(conv1.GetOutTensor(0))
    pool1 = nn_ops.Pooling(bn1.GetOutTensor(0), (3, 3), stride=2, pad=1)

    # Layers
    layer1 = MakeLayer(pool1.GetOutTensor(0), 64, layers[0])
    layer2 = MakeLayer(layer1.GetOutTensor(0), 128, layers[1], stride=2)
    layer3 = MakeLayer(layer2.GetOutTensor(0), 256, layers[2], stride=2)
    layer4 = MakeLayer(layer3.GetOutTensor(0), 512, layers[3], stride=2)

    # Avg pooling + FC
    mean = nn_ops.ReduceMean(layer4.GetOutTensor(0), axis=[2, 3])
    fc = nn_ops.FC(mean.GetOutTensor(0), num_classes)

    # Softmax + cross-entropy loss
    loss = nn_ops.SoftmaxCrossEntropy(fc.GetOutTensor(0))

    return nn_ops.Ops.G
Example #5
0
 def AddBasicConv(img, fltr, stride=1, padding=0):
     conv = nn_ops.Conv(img, fltr, stride, padding)
     bn = nn_ops.BatchNorm(conv.GetOutTensor(0))
     return bn