Example #1
0
def separable_conv_with_bn(x,
                           f,
                           stride=False,
                           aspp=False,
                           atrous_rate=1,
                           act_fn=True,
                           last_block=False,
                           end_point=False,
                           eps=1e-03,
                           out=False,
                           test=False,
                           fix_params=False):

    with nn.parameter_scope("depthwise"):
        if (stride == True):
            h = PF.depthwise_convolution(x, (3, 3),
                                         stride=(2, 2),
                                         pad=(1, 1),
                                         with_bias=False,
                                         fix_parameters=fix_params)
        elif (aspp == True):
            h = PF.depthwise_convolution(x, (3, 3),
                                         pad=(atrous_rate, atrous_rate),
                                         stride=(1, 1),
                                         dilation=(atrous_rate, atrous_rate),
                                         with_bias=False,
                                         fix_parameters=fix_params)

        else:
            h = PF.depthwise_convolution(x, (3, 3),
                                         pad=(1, 1),
                                         with_bias=False,
                                         fix_parameters=fix_params)

        h = PF.batch_normalization(h,
                                   batch_stat=not test,
                                   eps=eps,
                                   fix_parameters=fix_params)
        if last_block == True:
            h = F.relu(h)

    with nn.parameter_scope("pointwise"):
        h = PF.convolution(h,
                           f, (1, 1),
                           stride=(1, 1),
                           with_bias=False,
                           fix_parameters=fix_params)
        h = PF.batch_normalization(h,
                                   batch_stat=not test,
                                   eps=eps,
                                   fix_parameters=fix_params)
        if end_point == True:
            global endpoints
            endpoints['Decoder End Point 1'] = h

        if act_fn == True:
            h = F.relu(h)

    return h
Example #2
0
    def shuffle_unit(x, scope_name, dn=False):
        """
        Figure. 2 (b) and (c) in https://arxiv.org/pdf/1707.01083.pdf
        """

        C = x.shape[1]
        h = x
        with nn.parameter_scope(scope_name):
            with nn.parameter_scope("gconv1"):
                h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                   group=groups,
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h, True)

            with nn.parameter_scope("shuffle"):  # no meaning but semantics
                h = shuffle(h)

            with nn.parameter_scope("dconv"):
                stride = (2, 2) if dn else (1, 1)
                h = PF.depthwise_convolution(h, kernel=(3, 3), pad=(1, 1),
                                             stride=stride,
                                             with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)

            with nn.parameter_scope("gconv2"):
                h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                   group=groups,
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)

            s = F.average_pooling(x, (2, 2)) if dn else x
            h = F.concatenate(*[h, s], axis=1) if dn else h + s
            h = F.relu(h)
        return h
def network(x, y, test=False):
    # Input:x -> 3,64,64
    # AveragePooling -> 3,12,21
    h = F.average_pooling(x, (5, 3), (5, 3))
    # LeakyReLU_2
    h = F.leaky_relu(h, 0.1, True)
    # Convolution_2 -> 20,13,21
    h = PF.convolution(h, 20, (2, 3), (1, 1), name='Convolution_2')
    # BatchNormalization
    h = PF.batch_normalization(h, (1, ),
                               0.9,
                               0.0001,
                               not test,
                               name='BatchNormalization')
    # ReLU
    h = F.relu(h, True)
    # DepthwiseConvolution
    h = PF.depthwise_convolution(h, (5, 5), (2, 2),
                                 name='DepthwiseConvolution')
    # MaxPooling_2 -> 20,6,7
    h = F.max_pooling(h, (2, 3), (2, 3))
    # LeakyReLU
    h = F.leaky_relu(h, 0.1, True)
    # Affine -> 2
    h = PF.affine(h, (2, ), name='Affine')
    # Softmax
    h = F.softmax(h)
    return h
Example #4
0
def test_FLOPsEstimator():
    x = nn.Variable((1, 3, 12, 12))
    y = PF.depthwise_convolution(x, kernel=(5, 5), with_bias=True)
    t = PF.fused_batch_normalization(y)
    z = F.relu6(F.sigmoid(PF.affine(t, (3, 3), base_axis=2) + 3))
    z = F.global_average_pooling(z)

    est = FLOPsEstimator()
    assert est.predict(z) == 17644
Example #5
0
def depthwise_separable_conv5x5(x, output_filter, scope, test):
    """
        depthwise separable convolution with kernel 5x5.
    """
    with nn.parameter_scope(scope):
        h = conv1x1(x, output_filter, scope, test)
        h = PF.depthwise_convolution(h, (5, 5), (2, 2), with_bias=False)
        h = PF.convolution(h, output_filter, (1, 1), with_bias=False)
        h = PF.batch_normalization(h, batch_stat=not test)
        h = F.relu(h)
    return h
Example #6
0
def test_parametric_function_2d(inshape, kernel, multiplier, outshape):
    base_axis = len(inshape) - 3
    sample_channels = inshape[base_axis]
    outmap_channels = sample_channels * multiplier
    x = nn.Variable(inshape)
    y = PF.depthwise_convolution(x, kernel, multiplier=multiplier)
    p = nn.get_parameters()
    assert y.shape == outshape
    assert p['depthwise_conv/W'].shape == (outmap_channels,) + kernel
    assert p['depthwise_conv/b'].shape == (outmap_channels,)
    nn.clear_parameters()