Example #1
0
def propagate_pad(op):
    # type: (ONNXOperation)->typing.Tuple[typing.List[typing.List[int]], typing.List[str]]

    if 'paddings' in op.attribs:
        paddings = op.attribs['paddings']
    elif 'pads' in op.attribs:
        paddings = op.attribs['pads']
    else:
        assert False

    return [
        infer.pad(input=op.input.shape, padding=to_nnef_padding(paddings))
    ], [op.input.dtype]
Example #2
0
def pad_image_shape(op):
    # type: (Caffe2Operation)->ShapeResult
    is_nhwc = op.attribs.get('order', 'NCHW').upper() == 'NHWC'

    def expand(list, default):
        if is_nhwc:
            return [default] + list + [default]
        else:
            return [default, default] + list

    return infer.pad(input=op.inputs[0].shape,
                     padding=expand(
                         caffe2_pads_to_nnef_padding(op.attribs['pads']),
                         (0, 0))), op.inputs[0].dtype
def propagate_pad(op, const_value_by_tensor):
    # type: (TFOperation, _ConstValueByTensorT)->typing.Tuple[typing.List[typing.List[int]], typing.List[str]]
    input, paddings = op.inputs
    paddings = const_value_by_tensor[paddings].tolist()  # type: typing.List[typing.Tuple[int, int]]
    return [infer.pad(input=input.shape, padding=paddings)], [op.attribs['T']]
 def test_pad(self):
     self.assertEqual([2, 7, 12], infer.pad([1, 2, 3], [(0, 1), (2, 3), (4, 5)]))