Example #1
0
    def init_training_dnn_single(self, graph, optimizer_conf):
        ''' initialze training graph; 
    assumes self.logits, self.labels_holder in place'''
        with graph.as_default():

            # record variables we have already initialized
            variables_before = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)

            loss = nnet.loss_dnn(self.logits, self.labels_holder)
            learning_rate_holder = tf.placeholder(tf.float32,
                                                  shape=[],
                                                  name='learning_rate')
            # train op may introduce new variables
            #train_op = nnet.training(optimizer_conf, loss, learning_rate_holder)
            opt = nnet.prep_optimizer(optimizer_conf, learning_rate_holder)
            grads = nnet.get_gradients(opt, loss)
            train_op = nnet.apply_gradients(optimizer_conf, opt, grads)

            eval_acc = nnet.evaluation_dnn(self.logits, self.labels_holder)
            # and thus we need to intialize them
            variables_after = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
            new_variables = list(set(variables_after) - set(variables_before))
            init_train_op = tf.variables_initializer(new_variables)

        self.loss = loss
        self.learning_rate_holder = learning_rate_holder
        self.train_op = train_op
        self.eval_acc = eval_acc

        self.init_train_op = init_train_op
Example #2
0
    def init_training_dnn_multi(self, graph, optimizer_conf):
        tower_losses = []
        tower_grads = []
        tower_accs = []

        with graph.as_default(), tf.device('/cpu:0'):

            variables_before = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)

            learning_rate_holder = tf.placeholder(tf.float32,
                                                  shape=[],
                                                  name='learning_rate')
            assert optimizer_conf['op_type'].lower() == 'sgd'
            opt = tf.train.GradientDescentOptimizer(learning_rate_holder)

            for i in range(self.num_towers):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('Tower_%d' % (i)) as scope:

                        tower_start_index = i * self.batch_size
                        tower_end_index = (i + 1) * self.batch_size

                        tower_labels_holder = self.labels_holder[
                            tower_start_index:tower_end_index]

                        loss = nnet.loss_dnn(self.tower_logits[i],
                                             tower_labels_holder)
                        tower_losses.append(loss)
                        grads = opt.compute_gradients(loss)
                        tower_grads.append(grads)
                        eval_acc = nnet.evaluation_dnn(self.tower_logits[i],
                                                       tower_labels_holder)
                        tower_accs.append(eval_acc)

            grads = nnet.average_gradients(tower_grads)
            train_op = opt.apply_gradients(grads)
            losses = tf.reduce_sum(tower_losses)
            accs = tf.reduce_sum(tower_accs)
            # initialize op for variables introduced in optimizer
            variables_after = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
            new_variables = list(set(variables_after) - set(variables_before))
            init_train_op = tf.variables_initializer(new_variables)

        self.loss = losses
        self.learning_rate_holder = learning_rate_holder
        self.train_op = train_op
        self.eval_acc = accs

        self.init_train_op = init_train_op
Example #3
0
File: bn.py Project: ytyeung/TIK
    def init_training_bn_single(self, graph, optimizer_conf):
        ''' initialze training graph; 
    assumes self.logits, self.labels_holder in place'''
        with graph.as_default():

            loss = nnet.loss_dnn(self.logits, self.labels_holder)
            learning_rate_holder = tf.placeholder(tf.float32,
                                                  shape=[],
                                                  name='learning_rate')
            train_op = nnet.training(optimizer_conf, loss,
                                     learning_rate_holder)
            eval_acc = nnet.evaluation_dnn(self.logits, self.labels_holder)

        self.loss = loss
        self.learning_rate_holder = learning_rate_holder
        self.train_op = train_op
        self.eval_acc = eval_acc
Example #4
0
File: bn.py Project: ytyeung/TIK
    def init_training_bn_multi(self, graph, optimizer_conf):
        tower_losses = []
        tower_grads = []
        tower_accs = []

        with graph.as_default(), tf.device('/cpu:0'):

            learning_rate_holder = tf.placeholder(tf.float32,
                                                  shape=[],
                                                  name='learning_rate')
            assert optimizer_conf['op_type'].lower() == 'sgd'
            opt = tf.train.GradientDescentOptimizer(learning_rate_holder)

            for i in range(self.num_towers):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('Tower_%d' % (i)) as scope:

                        tower_start_index = i * self.batch_size
                        tower_end_index = (i + 1) * self.batch_size

                        tower_labels_holder = self.labels_holder[
                            tower_start_index:tower_end_index]

                        loss = nnet.loss_dnn(self.tower_logits[i],
                                             tower_labels_holder)
                        tower_losses.append(loss)
                        grads = opt.compute_gradients(loss)
                        tower_grads.append(grads)
                        eval_acc = nnet.evaluation_dnn(self.tower_logits[i],
                                                       tower_labels_holder)
                        tower_accs.append(eval_acc)

            grads = nnet.average_gradients(tower_grads)
            train_op = opt.apply_gradients(grads)
            losses = tf.reduce_sum(tower_losses)
            accs = tf.reduce_sum(tower_accs)

        self.loss = losses
        self.eval_acc = accs
        self.learning_rate_holder = learning_rate_holder
        self.train_op = train_op
Example #5
0
    def init_training_multi(self, graph, optimizer_conf):
        tower_losses = []
        tower_grads = []
        tower_asr_accs = []
        tower_sid_accs = []

        with graph.as_default(), tf.device('/cpu:0'):

            # record variables we have already initialized
            variables_before = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)

            learning_rate_holder = tf.placeholder(tf.float32,
                                                  shape=[],
                                                  name='learning_rate')
            if self.alpha_holder is None:
                self.alpha_holder = tf.placeholder(tf.float32,
                                                   shape=[],
                                                   name='alpha_holder')
            opt = nnet.prep_optimizer(optimizer_conf, learning_rate_holder)

            for i in range(self.num_towers):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('Tower_%d' % (i)) as scope:

                        tower_start_index = i * self.batch_size
                        tower_end_index = (i + 1) * self.batch_size

                        tower_asr_labels_holder = self.asr_labels_holder[
                            tower_start_index:tower_end_index]
                        tower_sid_labels_holder = self.sid_labels_holder[
                            tower_start_index:tower_end_index]
                        tower_mask_holder = self.mask_holder[
                            tower_start_index:tower_end_index]

                        asr_loss = nnet.loss_dnn(self.tower_asr_logits[i],
                                                 tower_asr_labels_holder)
                        sid_loss = nnet.loss_dnn(self.tower_sid_logits[i],
                                                 tower_sid_labels_holder)
                        loss = self.alpha_holder * asr_loss + self.beta_holder * sid_loss
                        tower_losses.append(loss)

                        grads = nnet.get_gradients(opt, loss)
                        tower_grads.append(grads)

                        asr_eval_acc = nnet.evaluation_dnn(
                            self.tower_asr_logits[i], tower_asr_labels_holder,
                            tower_mask_holder)
                        sid_eval_acc = nnet.evaluation_dnn(
                            self.tower_sid_logits[i], tower_sid_labels_holder)

                        tower_asr_accs.append(asr_eval_acc)
                        tower_sid_accs.append(sid_eval_acc)

            grads = nnet.average_gradients(tower_grads)
            train_op = nnet.apply_gradients(optimizer_conf, opt, grads)
            losses = tf.reduce_sum(tower_losses)
            asr_accs = tf.reduce_sum(tower_asr_accs)
            sid_accs = tf.reduce_sum(tower_sid_accs)

            # we need to intialize variables that are newly added
            variables_after = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
            new_variables = list(set(variables_after) - set(variables_before))
            init_train_op = tf.variables_initializer(new_variables)

        self.loss = losses
        self.learning_rate_holder = learning_rate_holder
        self.train_op = train_op
        self.asr_eval_acc = asr_accs
        self.sid_eval_acc = sid_accs

        self.init_train_op = init_train_op
Example #6
0
    def init_training_single(self, graph, optimizer_conf, learning_rate=None):
        ''' initialze training graph; 
    assumes self.asr_logits, self.sid_logits, self.labels_holder in place'''
        with graph.as_default():

            # record variables we have already initialized
            variables_before = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)

            learning_rate_holder = tf.placeholder(tf.float32,
                                                  shape=[],
                                                  name='learning_rate')
            if learning_rate is None:
                opt = nnet.prep_optimizer(optimizer_conf, learning_rate_holder)
            else:
                opt = nnet.prep_optimizer(optimizer_conf, learning_rate)
            if self.alpha_holder is None:
                self.alpha_holder = tf.placeholder(tf.float32,
                                                   shape=[],
                                                   name='alpha_holder')

            self.learning_rate_holder = learning_rate_holder

            self.bucket_tr_loss = []
            self.bucket_tr_asr_loss = []
            self.bucket_tr_sid_loss = []
            self.bucket_tr_train_op = []
            self.bucket_tr_asr_train_op = []
            self.bucket_tr_sid_train_op = []
            self.bucket_tr_asr_eval_acc = []
            self.bucket_tr_sid_eval_acc = []

            assert len(self.bucket_tr_asr_logits) == len(
                self.bucket_tr_sid_logits)
            for (asr_logits, sid_logits, asr_labels_holder, sid_labels_holder, mask_holder) in \
              zip(self.bucket_tr_asr_logits, self.bucket_tr_sid_logits,
              self.bucket_tr_asr_labels_holders, self.bucket_tr_sid_labels_holders,
              self.bucket_tr_mask_holders):

                asr_loss = nnet.loss_dnn(asr_logits, asr_labels_holder,
                                         mask_holder)
                sid_loss = nnet.loss_dnn(sid_logits, sid_labels_holder)
                loss = self.alpha_holder * asr_loss + self.beta_holder * sid_loss

                grads = nnet.get_gradients(opt, loss)
                asr_grads = nnet.get_gradients(opt, asr_loss)
                sid_grads = nnet.get_gradients(opt, sid_loss)
                train_op = nnet.apply_gradients(optimizer_conf, opt, grads)
                asr_train_op = nnet.apply_gradients(optimizer_conf, opt,
                                                    asr_grads)
                sid_train_op = nnet.apply_gradients(optimizer_conf, opt,
                                                    sid_grads)

                asr_eval_acc = nnet.evaluation_dnn(asr_logits,
                                                   asr_labels_holder,
                                                   mask_holder)
                sid_eval_acc = nnet.evaluation_dnn(sid_logits,
                                                   sid_labels_holder)

                self.bucket_tr_loss.append(loss)
                self.bucket_tr_asr_loss.append(asr_loss)
                self.bucket_tr_sid_loss.append(sid_loss)
                self.bucket_tr_train_op.append(train_op)
                self.bucket_tr_asr_train_op.append(asr_train_op)
                self.bucket_tr_sid_train_op.append(sid_train_op)
                self.bucket_tr_asr_eval_acc.append(asr_eval_acc)
                self.bucket_tr_sid_eval_acc.append(sid_eval_acc)

            variables_after = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
            new_variables = list(set(variables_after) - set(variables_before))
            init_train_op = tf.variables_initializer(new_variables)
            self.init_train_op = init_train_op