Example #1
0
verbosePrint.vIteration = -1
verbosePrint.stage = ''

cycles = 1000
report = cycles / 10

for iteration in range(cycles + 1):
    vprint(iteration, '~~~~~~~~~~~ Iteration %d ~~~~~~~~~~~' % iteration)
    combinedError = 0
    for row_index in range(len(targetTraining)):
        datain = inputTraining[row_index:row_index + 1]
        goal_prediction = targetTraining[row_index:row_index + 1]
        prediction = nn.fire(datain)
        # print('Prediction:' + str(prediction))
        vprint(iteration, nn)

        error = (goal_prediction - prediction)**2
        combinedError += error

        nn.learn(datain, goal_prediction)

    if iteration % report == 0:
        print('Iteration: %d Error: %s' % (iteration, str(combinedError)))
    vprint(iteration, '')
    vprint(iteration, '~~~~~~~~~~~~~~~ End ~~~~~~~~~~~~~~~~')
    vprint(iteration, nn, quit=True)

print()
nn.checkup(inputData, targetData)
Example #2
0
import numpy as np
from nnet import NNet

nn = NNet([[[0.1], [0.2], [-0.1]]])
nn.setAlpha(0.01)
nn.setVerbose(True)

datain = [[8.5, 0.65, 1.2]]
goal = [[1]]
for i in range(4):
    output = nn.fire(datain)
    print('Goal:    ' + str(goal))
    print(nn)
    nn.learn(datain, goal)
Example #3
0
np.random.seed(1)

batch_size = 100
iterations = 301

nn = NNet(sizes=[784, 100, 10], batch_size=batch_size)
nn.setActivations(['brelu', 'linear'])
nn.setMaskPr({1: 2})
nn.setAlpha(0.001)
nn.scale(0.1)

for j in range(iterations):
    error, correct_cnt = (0.0, 0)
    for i in range(int(len(images) / batch_size)):
        batch_start, batch_end = ((i * batch_size), ((i + 1) * batch_size))
        prediction = nn.learn(images[batch_start:batch_end],
                              labels[batch_start:batch_end])
        # vprint(i, nn, suffix='a', quit=True)
        # vprint(i, nn.dropout_masks[1], suffix='m', quit=True)
        # nn.train(labels[batch_start:batch_end])
        # vprint(i, nn, stage='b', quit=True)

        error += np.sum((labels[batch_start:batch_end] - prediction) ** 2)
        for k in range(batch_size):
            correct_cnt += int(
                np.argmax(prediction[k:k + 1])
                == np.argmax(labels[batch_start + k:batch_start + k + 1]))

    if (j % 10 == 0):
        test_error = 0.0
        test_correct_cnt = 0
Example #4
0
iterations = 351

nn = NNet(sizes=[784, 40, 10])
nn.setActivations(['relu', 'linear'])
nn.setAlpha(0.005)
nn.scale(0.1)

nn.fire(images[0:1])
nn.checkup(images[0:1], labels[0:1])
# vprint(0, nn)

for j in range(iterations):
    error, correct_cnt = (0.0, 0)
    for i in range(len(images)):
        # vprint(i, nn, quit=True)
        prediction = nn.learn(images[i:i + 1], labels[i:i + 1])
        # vprint(i, nn, suffix='b', quit=True)

        error += np.sum((labels[i:i + 1] - prediction)**2)
        correct_cnt += int(np.argmax(prediction) == \
                           np.argmax(labels[i:i + 1]))

        sys.stdout.write("\r I:" + str(j) + \
            " Train-Err:" + str(error / float(len(images)))[0:5] + \
            " Train-Acc:" + str(correct_cnt / float(len(images))))

    if (j % 10 == 0):
        test_error = 0.0
        test_correct_cnt = 0

        for i in range(len(test_images)):