Example #1
0
print(output_layer_value)

# --------------------
# (5) Convert the NNgen dataflow to a hardware description (Verilog HDL and IP-XACT)
# --------------------

silent = False
axi_datawidth = 32

# to Veriloggen object
# targ = ng.to_veriloggen([output_layer], 'hello_nngen', silent=silent,
#                        config={'maxi_datawidth': axi_datawidth})

# to IP-XACT (the method returns Veriloggen object, as well as to_veriloggen)
targ = ng.to_ipxact([output_layer],
                    'hello_nngen',
                    silent=silent,
                    config={'maxi_datawidth': axi_datawidth})
print('# IP-XACT was generated. Check the current directory.')

# to Verilog HDL RTL (the method returns a source code text)
# rtl = ng.to_verilog([output_layer], 'hello_nngen', silent=silent,
#                    config={'maxi_datawidth': axi_datawidth})

# --------------------
# (6) Save the quantized weights
# --------------------

# convert weight values to a memory image:
# on a real FPGA platform, this image will be used as a part of the model definition.

param_filename = 'hello_nngen.npy'
def run(
        act_dtype=ng.int16,
        weight_dtype=ng.int8,
        bias_dtype=ng.int32,
        scale_dtype=ng.int8,
        with_batchnorm=True,
        disable_fusion=False,
        conv2d_par_ich=1,
        conv2d_par_och=1,
        conv2d_par_col=1,
        conv2d_par_row=1,
        conv2d_concur_och=None,
        conv2d_stationary='filter',
        pool_par=1,
        elem_par=1,
        chunk_size=64,
        axi_datawidth=32,
        silent=False,
        filename=None,
        # simtype='iverilog',
        # simtype='verilator',
        simtype=None,  # no RTL simulation
        outputfile=None):

    # input mean and standard deviation
    imagenet_mean = np.array([0.485, 0.456, 0.406]).astype(np.float32)
    imagenet_std = np.array([0.229, 0.224, 0.225]).astype(np.float32)

    act_shape = (1, 224, 224, 3)

    if not with_batchnorm:
        raise ValueError('with_batchnorm must be True for ResNet18.')

    # pytorch model
    model = torchvision.models.resnet18(pretrained=True)

    # Pytorch to ONNX
    onnx_filename = 'resnet18_imagenet.onnx'
    dummy_input = torch.randn(*act_shape).transpose(1, 3)
    input_names = ['act']
    output_names = ['out']
    model.eval()
    torch.onnx.export(model,
                      dummy_input,
                      onnx_filename,
                      input_names=input_names,
                      output_names=output_names)

    # --------------------
    # (1) Represent a DNN model as a dataflow by NNgen operators
    # --------------------

    # ONNX to NNgen
    dtypes = {}
    (outputs, placeholders, variables, constants,
     operators) = ng.from_onnx(onnx_filename,
                               value_dtypes=dtypes,
                               default_placeholder_dtype=act_dtype,
                               default_variable_dtype=weight_dtype,
                               default_constant_dtype=weight_dtype,
                               default_operator_dtype=act_dtype,
                               default_scale_dtype=scale_dtype,
                               default_bias_dtype=bias_dtype,
                               disable_fusion=disable_fusion)

    # --------------------
    # (2) Assign quantized weights to the NNgen operators
    # --------------------

    if act_dtype.width > 8:
        act_scale_factor = 128
    else:
        act_scale_factor = int(round(2**(act_dtype.width - 1) * 0.5))

    input_scale_factors = {'act': act_scale_factor}
    input_means = {'act': imagenet_mean * act_scale_factor}
    input_stds = {'act': imagenet_std * act_scale_factor}

    ng.quantize(outputs, input_scale_factors, input_means, input_stds)

    # --------------------
    # (3) Assign hardware attributes
    # --------------------

    for op in operators.values():
        if isinstance(op, ng.conv2d):
            op.attribute(par_ich=conv2d_par_ich,
                         par_och=conv2d_par_och,
                         par_col=conv2d_par_col,
                         par_row=conv2d_par_row,
                         concur_och=conv2d_concur_och,
                         stationary=conv2d_stationary)

        if isinstance(op, (ng.avg_pool, ng.max_pool, ng.avg_pool_serial,
                           ng.max_pool_serial)):
            op.attribute(par=pool_par)

        if ng.is_elementwise_operator(op):
            op.attribute(par=elem_par)

    # --------------------
    # (4) Verify the DNN model behavior by executing the NNgen dataflow as a software
    # --------------------

    act = placeholders['act']
    out = outputs['out']

    # verification data
    img = np.array(PIL.Image.open('car.png').convert('RGB')).astype(np.float32)
    img = img.reshape([1] + list(img.shape))

    img = img / 255
    img = (img - imagenet_mean) / imagenet_std

    # execution on pytorch
    model_input = np.broadcast_to(img, act_shape)

    if act.perm is not None:
        model_input = np.transpose(model_input, act.reversed_perm)

    model.eval()
    model_out = model(torch.from_numpy(model_input)).detach().numpy()
    if act.perm is not None and len(model_out.shape) == len(act.shape):
        model_out = np.transpose(model_out, act.perm)
    scaled_model_out = model_out * out.scale_factor

    # software-based verification
    vact = img * act_scale_factor
    vact = np.clip(vact, -1.0 * (2**(act.dtype.width - 1) - 1),
                   1.0 * (2**(act.dtype.width - 1) - 1))
    vact = np.round(vact).astype(np.int64)
    vact = np.broadcast_to(vact, act_shape)

    # compare outputs of hidden layers
    relu_op = [
        v for k, v in operators.items()
        if isinstance(v, ng.conv2d) and not isinstance(v, ng.matmul)
    ][0]
    maxpool_op = [
        v for k, v in operators.items()
        if isinstance(v, (ng.max_pool, ng.max_pool_serial))
    ][0]
    relu_ops = [v for k, v in operators.items() if isinstance(v, ng.relu)]
    layer1_0_op = relu_ops[0]
    layer1_op = relu_ops[1]
    layer2_0_op = relu_ops[2]
    layer2_op = relu_ops[3]
    layer3_0_op = relu_ops[4]
    layer3_op = relu_ops[5]
    layer4_0_op = relu_ops[6]
    layer4_op = relu_ops[7]
    avgpool_op = [
        v for k, v in operators.items()
        if isinstance(v, (ng.avg_pool, ng.avg_pool_serial))
    ][0]
    fc_op = [v for k, v in operators.items() if isinstance(v, ng.matmul)][0]
    sub_ops = [
        relu_op, maxpool_op, layer1_0_op, layer1_op, layer2_0_op, layer2_op,
        layer3_0_op, layer3_op, layer4_0_op, layer4_op, avgpool_op, fc_op
    ]
    sub_outs = ng.eval(sub_ops, act=vact)
    sub_outs = [sub_out.transpose([0, 3, 1, 2])
                for sub_out in sub_outs[:-1]] + sub_outs[-1:]
    sub_scale_factors = [sub_op.scale_factor for sub_op in sub_ops]

    model.eval()
    model_relu_out = nn.Sequential(model.conv1, model.bn1, model.relu)(
        torch.from_numpy(model_input)).detach().numpy()
    model_maxpool_out = nn.Sequential(
        model.conv1, model.bn1, model.relu,
        model.maxpool)(torch.from_numpy(model_input)).detach().numpy()

    #    class model_layer1_0(nn.Module):
    #        def __init__(self):
    #            super(model_layer1_0, self).__init__()
    #            self.conv1 = model.conv1
    #            self.bn1 = model.bn1
    #            self.relu = model.relu
    #            self.maxpool = model.maxpool
    #            self.layer1_0 = model.layer1[0]
    #
    #        def forward(self, x):
    #            x = self.relu(self.bn1(self.conv1(x)))
    #            x = self.maxpool(x)
    #            x = self.layer1_0(x)
    #            return x
    #
    #    model_layer1_0_out = model_layer1_0()(torch.from_numpy(model_input)).detach().numpy()

    model_layer1_0_out = nn.Sequential(
        model.conv1, model.bn1, model.relu, model.maxpool,
        model.layer1[0])(torch.from_numpy(model_input)).detach().numpy()
    model_layer1_out = nn.Sequential(
        model.conv1, model.bn1, model.relu, model.maxpool,
        model.layer1)(torch.from_numpy(model_input)).detach().numpy()

    model_layer2_0_out = nn.Sequential(
        model.conv1, model.bn1, model.relu, model.maxpool, model.layer1,
        model.layer2[0])(torch.from_numpy(model_input)).detach().numpy()
    model_layer2_out = nn.Sequential(
        model.conv1, model.bn1, model.relu, model.maxpool, model.layer1,
        model.layer2)(torch.from_numpy(model_input)).detach().numpy()

    model_layer3_0_out = nn.Sequential(
        model.conv1, model.bn1, model.relu, model.maxpool, model.layer1,
        model.layer2,
        model.layer3[0])(torch.from_numpy(model_input)).detach().numpy()
    model_layer3_out = nn.Sequential(
        model.conv1, model.bn1, model.relu, model.maxpool, model.layer1,
        model.layer2,
        model.layer3)(torch.from_numpy(model_input)).detach().numpy()

    model_layer4_0_out = nn.Sequential(
        model.conv1, model.bn1, model.relu, model.maxpool, model.layer1,
        model.layer2, model.layer3,
        model.layer4[0])(torch.from_numpy(model_input)).detach().numpy()
    model_layer4_out = nn.Sequential(
        model.conv1, model.bn1, model.relu, model.maxpool, model.layer1,
        model.layer2, model.layer3,
        model.layer4)(torch.from_numpy(model_input)).detach().numpy()

    model_avgpool_out = nn.Sequential(
        model.conv1, model.bn1, model.relu, model.maxpool, model.layer1,
        model.layer2, model.layer3, model.layer4,
        model.avgpool)(torch.from_numpy(model_input)).detach().numpy()

    class Flatten(nn.Module):
        def forward(self, input):
            return input.view(input.size(0), -1)

    model_fc_out = nn.Sequential(
        model.conv1, model.bn1, model.relu, model.maxpool,
        model.layer1, model.layer2, model.layer3, model.layer4, model.avgpool,
        Flatten(), model.fc)(torch.from_numpy(model_input)).detach().numpy()

    model_outs = [
        model_relu_out, model_maxpool_out, model_layer1_0_out,
        model_layer1_out, model_layer2_0_out, model_layer2_out,
        model_layer3_0_out, model_layer3_out, model_layer4_0_out,
        model_layer4_out, model_avgpool_out, model_fc_out
    ]
    scaled_outs = [
        model_out * scale_factor
        for model_out, scale_factor in zip(model_outs, sub_scale_factors)
    ]

    max_diffs = [
        model_out.max() / sub_out.max()
        for model_out, sub_out in zip(scaled_outs, sub_outs)
    ]
    overflows = [
        np.sum(np.abs(sub_out) >= abs(2**(sub_op.dtype.width - 1) - 1))
        for sub_op, sub_out in zip(sub_ops, sub_outs)
    ]
    mean_square_errors = [
        np.sum((sub_out - model_out)**2) / sub_out.size
        for model_out, sub_out in zip(scaled_outs, sub_outs)
    ]
    corrcoefs = [
        np.corrcoef(model_out.reshape([-1]), sub_out.reshape([-1]))
        for model_out, sub_out in zip(model_outs, sub_outs)
    ]

    # compare prediction results
    eval_outs = ng.eval([out], act=vact)
    vout = eval_outs[0]

    mean_square_error = np.sum((vout - scaled_model_out)**2) / vout.size
    corrcoef = np.corrcoef(model_out.reshape([-1]), vout.reshape([-1]))

    class_index = json.load(open('imagenet_class_index.json', 'r'))
    labels = {int(key): value for (key, value) in class_index.items()}

    mout = scaled_model_out
    for bat in range(mout.shape[0]):
        m_top10 = list(
            sorted(enumerate(mout[bat]), key=lambda x: x[1],
                   reverse=True))[:10]
        m_top10_indexes = [index for index, value in m_top10]
        v_top10 = list(
            sorted(enumerate(vout[bat]), key=lambda x: x[1],
                   reverse=True))[:10]
        v_top10_indexes = [index for index, value in v_top10]
        num_hit = 0
        score = 0
        for index, value in m_top10:
            print("# mout: %s (%d) = %f" % (str(labels[index]), index, value))
        for index, value in v_top10:
            print("# vout: %s (%d) = %d" % (str(labels[index]), index, value))
            if index in m_top10_indexes:
                num_hit += 1
                score += 10 - abs(
                    m_top10_indexes.index(index) -
                    v_top10_indexes.index(index))
        print("# top-10 hit: %d" % num_hit)
        print("# top-10 score: %d" % score)

    # breakpoint()

    # --------------------
    # (5) Convert the NNgen dataflow to a hardware description (Verilog HDL and IP-XACT)
    # --------------------

    # to Veriloggen object
    # targ = ng.to_veriloggen([out], 'resnet18', silent=silent,
    #                        config={'maxi_datawidth': axi_datawidth})

    # to IP-XACT (the method returns Veriloggen object, as well as to_veriloggen)
    targ = ng.to_ipxact([out],
                        'resnet18',
                        silent=silent,
                        config={'maxi_datawidth': axi_datawidth})

    # to Verilog HDL RTL (the method returns a source code text)
    # rtl = ng.to_verilog([out], 'resnet18', silent=silent,
    #                    config={'maxi_datawidth': axi_datawidth})

    # --------------------
    # (6) Simulate the generated hardware by Veriloggen and Verilog simulator
    # --------------------

    if simtype is None:
        sys.exit()

    # to memory image
    param_data = ng.export_ndarray([out], chunk_size)
    param_bytes = len(param_data)

    variable_addr = int(math.ceil(
        (act.addr + act.memory_size) / chunk_size)) * chunk_size
    check_addr = int(math.ceil(
        (variable_addr + param_bytes) / chunk_size)) * chunk_size
    tmp_addr = int(math.ceil(
        (check_addr + out.memory_size) / chunk_size)) * chunk_size

    memimg_datawidth = 32
    # mem = np.zeros([1024 * 1024 * 256 // (memimg_datawidth // 8)], dtype=np.int64)
    mem = np.zeros([1024 * 1024 * 1024 // (memimg_datawidth // 8)],
                   dtype=np.int16)
    mem = mem + [100]

    # placeholder
    axi.set_memory(
        mem, vact, memimg_datawidth, act_dtype.width, act.addr,
        max(int(math.ceil(axi_datawidth / act_dtype.width)), conv2d_par_ich))

    # parameters (variable and constant)
    axi.set_memory(mem, param_data, memimg_datawidth, 8, variable_addr)

    # verification data
    axi.set_memory(
        mem, vout, memimg_datawidth, act_dtype.width, check_addr,
        max(int(math.ceil(axi_datawidth / act_dtype.width)), conv2d_par_och))

    # test controller
    m = Module('test')
    params = m.copy_params(targ)
    ports = m.copy_sim_ports(targ)
    clk = ports['CLK']
    resetn = ports['RESETN']
    rst = m.Wire('RST')
    rst.assign(Not(resetn))

    # AXI memory model
    if outputfile is None:
        outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out'

    memimg_name = 'memimg_' + outputfile

    memory = axi.AxiMemoryModel(m,
                                'memory',
                                clk,
                                rst,
                                datawidth=axi_datawidth,
                                memimg=mem,
                                memimg_name=memimg_name,
                                memimg_datawidth=memimg_datawidth)
    memory.connect(ports, 'maxi')

    # AXI-Slave controller
    _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True)
    _saxi.connect(ports, 'saxi')

    # timer
    time_counter = m.Reg('time_counter', 32, initval=0)
    seq = Seq(m, 'seq', clk, rst)
    seq(time_counter.inc())

    def ctrl():
        for i in range(100):
            pass

        ng.sim.set_global_addrs(_saxi, tmp_addr)

        start_time = time_counter.value
        ng.sim.start(_saxi)

        print('# start')

        ng.sim.wait(_saxi)
        end_time = time_counter.value

        print('# end')
        print('# execution cycles: %d' % (end_time - start_time))

        # verify
        ok = True
        for bat in range(out.shape[0]):
            for x in range(out.shape[1]):
                orig = memory.read_word(bat * out.aligned_shape[1] + x,
                                        out.addr, act_dtype.width)
                check = memory.read_word(bat * out.aligned_shape[1] + x,
                                         check_addr, act_dtype.width)

                if vthread.verilog.NotEql(orig, check):
                    print('NG (', bat, x, ') orig: ', orig, ' check: ', check)
                    ok = False
                else:
                    print('OK (', bat, x, ') orig: ', orig, ' check: ', check)

        if ok:
            print('# verify: PASSED')
        else:
            print('# verify: FAILED')

        vthread.finish()

    th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl)
    fsm = th.start()

    uut = m.Instance(targ,
                     'uut',
                     params=m.connect_params(targ),
                     ports=m.connect_ports(targ))

    # simulation.setup_waveform(m, uut)
    simulation.setup_clock(m, clk, hperiod=5)
    init = simulation.setup_reset(m,
                                  resetn,
                                  m.make_reset(),
                                  period=100,
                                  polarity='low')

    init.add(
        Delay(10000000),
        Systask('finish'),
    )

    # output source code
    if filename is not None:
        m.to_verilog(filename)

    # run simulation
    sim = simulation.Simulator(m, sim=simtype)
    rslt = sim.run(outputfile=outputfile)
    lines = rslt.splitlines()
    if simtype == 'verilator' and lines[-1].startswith('-'):
        rslt = '\n'.join(lines[:-1])
    return rslt
Example #3
0
def run(act_dtype=ng.int16, weight_dtype=ng.int16,
        bias_dtype=ng.int32, scale_dtype=ng.int16,
        with_batchnorm=False, disable_fusion=False,
        conv2d_par_ich=1, conv2d_par_och=1, conv2d_par_col=1, conv2d_par_row=1,
        conv2d_concur_och=None, conv2d_stationary='filter',
        pool_par=1, elem_par=1,
        chunk_size=64,
        axi_datawidth=32, silent=False,
        filename=None,
        simtype='iverilog',
        # simtype='verilator',
        # simtype=None,  # no RTL simulation
        outputfile=None):

    # input mean and standard deviation
    cifar10_mean = np.array([0.4914, 0.4822, 0.4465]).astype(np.float32)
    cifar10_std = np.array([0.247, 0.243, 0.261]).astype(np.float32)

    act_shape = (1, 32, 32, 3)

    # pytorch model
    if with_batchnorm:
        model = torchvision.models.vgg11_bn(pretrained=False)
    else:
        model = torchvision.models.vgg11(pretrained=False)

    model.features[0].in_channels = act_shape[-1]

    model.avgpool = nn.Identity()
    #model.classifier[0] = nn.Linear(512, 4096)
    #model.classifier[6] = nn.Linear(4096, 10)

    model.classifier = nn.Sequential(
        nn.Linear(in_features=512, out_features=1024, bias=True),
        nn.ReLU(inplace=True),
        nn.Dropout(p=0.5),
        nn.Linear(in_features=1024, out_features=1024, bias=True),
        nn.ReLU(inplace=True),
        nn.Dropout(p=0.5),
        nn.Linear(in_features=1024, out_features=10, bias=True),
    )

    # Pytorch to ONNX
    onnx_filename = 'vgg11.onnx'
    dummy_input = torch.randn(*act_shape).transpose(1, 3)
    input_names = ['act']
    output_names = ['out']
    model.eval()
    torch.onnx.export(model, dummy_input, onnx_filename,
                      input_names=input_names, output_names=output_names)

    # --------------------
    # (1) Represent a DNN model as a dataflow by NNgen operators
    # --------------------

    # ONNX to NNgen
    dtypes = {}
    (outputs, placeholders, variables,
     constants, operators) = ng.from_onnx(onnx_filename,
                                          value_dtypes=dtypes,
                                          default_placeholder_dtype=act_dtype,
                                          default_variable_dtype=weight_dtype,
                                          default_constant_dtype=weight_dtype,
                                          default_operator_dtype=act_dtype,
                                          default_scale_dtype=scale_dtype,
                                          default_bias_dtype=bias_dtype,
                                          disable_fusion=disable_fusion)

    # --------------------
    # (2) Assign quantized weights to the NNgen operators
    # --------------------

    if act_dtype.width > 8:
        act_scale_factor = 128
    else:
        act_scale_factor = int(round(2 ** (act_dtype.width - 1) * 0.5))

    input_scale_factors = {'act': act_scale_factor}
    input_means = {'act': cifar10_mean * act_scale_factor}
    input_stds = {'act': cifar10_std * act_scale_factor}

    ng.quantize(outputs, input_scale_factors, input_means, input_stds)

    # --------------------
    # (3) Assign hardware attributes
    # --------------------

    for op in operators.values():
        if isinstance(op, ng.conv2d):
            op.attribute(par_ich=conv2d_par_ich,
                         par_och=conv2d_par_och,
                         par_col=conv2d_par_col,
                         par_row=conv2d_par_row,
                         concur_och=conv2d_concur_och,
                         stationary=conv2d_stationary)

        if isinstance(op, (ng.avg_pool, ng.max_pool,
                           ng.avg_pool_serial, ng.max_pool_serial)):
            op.attribute(par=pool_par)

        if ng.is_elementwise_operator(op):
            op.attribute(par=elem_par)

    # --------------------
    # (4) Verify the DNN model behavior by executing the NNgen dataflow as a software
    # --------------------

    act = placeholders['act']
    out = outputs['out']

    # verification data
    # random data
    img = np.random.uniform(size=act.length).astype(np.float32).reshape(act.shape)
    img = img * 12.0 * cifar10_std + cifar10_mean
    # img = np.random.normal(size=act.length).astype(np.float32).reshape(act.shape)
    # img = img * cifar10_std + cifar10_mean

    # execution on pytorch
    model_input = img

    if act.perm is not None:
        model_input = np.transpose(model_input, act.reversed_perm)

    model.eval()
    model_out = model(torch.from_numpy(model_input)).detach().numpy()
    if act.perm is not None and len(model_out.shape) == len(act.shape):
        model_out = np.transpose(model_out, act.perm)
    scaled_model_out = model_out * out.scale_factor

    # software-based verification
    vact = img * act_scale_factor
    vact = np.clip(vact,
                   -1.0 * (2 ** (act.dtype.width - 1) - 1),
                   1.0 * (2 ** (act.dtype.width - 1) - 1))
    vact = np.round(vact).astype(np.int64)

    eval_outs = ng.eval([out], act=vact)
    vout = eval_outs[0]

    labels = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

    mout = scaled_model_out
    for bat in range(mout.shape[0]):
        for index, value in list(sorted(enumerate(mout[bat]),
                                        key=lambda x: x[1], reverse=True))[:10]:
            print("# mout: %s (%d) = %f" % (str(labels[index]), index, value))
        for index, value in list(sorted(enumerate(vout[bat]),
                                        key=lambda x: x[1], reverse=True))[:10]:
            print("# vout: %s (%d) = %d" % (str(labels[index]), index, value))

    # breakpoint()

    # --------------------
    # (5) Convert the NNgen dataflow to a hardware description (Verilog HDL and IP-XACT)
    # --------------------

    # to Veriloggen object
    # targ = ng.to_veriloggen([out], 'vgg11', silent=silent,
    #                        config={'maxi_datawidth': axi_datawidth})

    # to IP-XACT (the method returns Veriloggen object, as well as to_veriloggen)
    targ = ng.to_ipxact([out], 'onnx_vgg11', silent=silent,
                        config={'maxi_datawidth': axi_datawidth})

    # to Verilog HDL RTL (the method returns a source code text)
    # rtl = ng.to_verilog([out], 'vgg11', silent=silent,
    #                    config={'maxi_datawidth': axi_datawidth})

    # --------------------
    # (6) Simulate the generated hardware by Veriloggen and Verilog simulator
    # --------------------

    if simtype is None:
        sys.exit()

    # to memory image
    param_data = ng.export_ndarray([out], chunk_size)
    param_bytes = len(param_data)

    variable_addr = int(math.ceil((act.addr + act.memory_size) / chunk_size)) * chunk_size
    check_addr = int(math.ceil((variable_addr + param_bytes) / chunk_size)) * chunk_size
    tmp_addr = int(math.ceil((check_addr + out.memory_size) / chunk_size)) * chunk_size

    memimg_datawidth = 32
    # mem = np.zeros([1024 * 1024 * 256 // (memimg_datawidth // 8)], dtype=np.int64)
    mem = np.zeros([1024 * 1024 * 1024 // (memimg_datawidth // 8)], dtype=np.int16)
    mem = mem + [100]

    # placeholder
    axi.set_memory(mem, vact, memimg_datawidth,
                   act_dtype.width, act.addr,
                   max(int(math.ceil(axi_datawidth / act_dtype.width)), conv2d_par_ich))

    # parameters (variable and constant)
    axi.set_memory(mem, param_data, memimg_datawidth,
                   8, variable_addr)

    # verification data
    axi.set_memory(mem, vout, memimg_datawidth,
                   act_dtype.width, check_addr,
                   max(int(math.ceil(axi_datawidth / act_dtype.width)), conv2d_par_och))

    # test controller
    m = Module('test')
    params = m.copy_params(targ)
    ports = m.copy_sim_ports(targ)
    clk = ports['CLK']
    resetn = ports['RESETN']
    rst = m.Wire('RST')
    rst.assign(Not(resetn))

    # AXI memory model
    if outputfile is None:
        outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out'

    memimg_name = 'memimg_' + outputfile

    memory = axi.AxiMemoryModel(m, 'memory', clk, rst,
                                datawidth=axi_datawidth,
                                memimg=mem, memimg_name=memimg_name,
                                memimg_datawidth=memimg_datawidth)
    memory.connect(ports, 'maxi')

    # AXI-Slave controller
    _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True)
    _saxi.connect(ports, 'saxi')

    # timer
    time_counter = m.Reg('time_counter', 32, initval=0)
    seq = Seq(m, 'seq', clk, rst)
    seq(
        time_counter.inc()
    )

    def ctrl():
        for i in range(100):
            pass

        ng.sim.set_global_addrs(_saxi, tmp_addr)

        start_time = time_counter.value
        ng.sim.start(_saxi)

        print('# start')

        ng.sim.wait(_saxi)
        end_time = time_counter.value

        print('# end')
        print('# execution cycles: %d' % (end_time - start_time))

        # verify
        ok = True
        for bat in range(out.shape[0]):
            for x in range(out.shape[1]):
                orig = memory.read_word(bat * out.aligned_shape[1] + x,
                                        out.addr, act_dtype.width)
                check = memory.read_word(bat * out.aligned_shape[1] + x,
                                         check_addr, act_dtype.width)

                if vthread.verilog.NotEql(orig, check):
                    print('NG (', bat, x,
                          ') orig: ', orig, ' check: ', check)
                    ok = False
                # else:
                #    print('OK (', bat, x,
                #          ') orig: ', orig, ' check: ', check)

        if ok:
            print('# verify: PASSED')
        else:
            print('# verify: FAILED')

        vthread.finish()

    th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl)
    fsm = th.start()

    uut = m.Instance(targ, 'uut',
                     params=m.connect_params(targ),
                     ports=m.connect_ports(targ))

    # simulation.setup_waveform(m, uut)
    simulation.setup_clock(m, clk, hperiod=5)
    init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low')

    init.add(
        Delay(10000000),
        Systask('finish'),
    )

    # output source code
    if filename is not None:
        m.to_verilog(filename)

    # run simulation
    sim = simulation.Simulator(m, sim=simtype)
    rslt = sim.run(outputfile=outputfile)
    lines = rslt.splitlines()
    if simtype == 'verilator' and lines[-1].startswith('-'):
        rslt = '\n'.join(lines[:-1])
    return rslt
Example #4
0
def run(
    act_dtype=ng.int8,
    weight_dtype=ng.int8,
    bias_dtype=ng.int32,
    scale_dtype=ng.int8,
    par_ich=2,
    par_och=2,
    chunk_size=64,
    axi_datawidth=32,
    silent=False,
    weight_filename='cnn.npy',
    verilog_filename=None,
    sim_filename=None,
    # simtype='iverilog',
    simtype='verilator',
    # simtype=None,  # no RTL simulation
):

    # --------------------
    # (1) Represent a DNN model as a dataflow by NNgen operators
    # --------------------

    # input
    input_layer = ng.placeholder(
        dtype=act_dtype,
        shape=(1, 32, 32, 3),  # N, H, W, C
        name='input_layer')

    # layer 0: conv2d (with bias and scale (= batchnorm)), relu, max_pool
    w0 = ng.variable(
        dtype=weight_dtype,
        shape=(64, 3, 3, 3),  # Och, Ky, Kx, Ich
        name='w0')
    b0 = ng.variable(dtype=bias_dtype, shape=(w0.shape[0], ), name='b0')
    s0 = ng.variable(dtype=scale_dtype, shape=(w0.shape[0], ), name='s0')

    a0 = ng.conv2d(input_layer,
                   w0,
                   strides=(1, 1, 1, 1),
                   bias=b0,
                   scale=s0,
                   act_func=ng.relu,
                   dtype=act_dtype,
                   sum_dtype=ng.int32)

    a0p = ng.max_pool_serial(a0, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1))

    # layer 1: conv2d, relu, reshape
    w1 = ng.variable(weight_dtype, shape=(64, 3, 3, a0.shape[-1]), name='w1')
    b1 = ng.variable(bias_dtype, shape=(w1.shape[0], ), name='b1')
    s1 = ng.variable(scale_dtype, shape=(w1.shape[0], ), name='s1')

    a1 = ng.conv2d(a0p,
                   w1,
                   strides=(1, 1, 1, 1),
                   bias=b1,
                   scale=s1,
                   act_func=ng.relu,
                   dtype=act_dtype,
                   sum_dtype=ng.int32)

    a1r = ng.reshape(a1, [1, -1])

    # layer 2: full-connection, relu
    w2 = ng.variable(weight_dtype, shape=(256, a1r.shape[-1]), name='w2')
    b2 = ng.variable(bias_dtype, shape=(w2.shape[0], ), name='b2')
    s2 = ng.variable(scale_dtype, shape=(w2.shape[0], ), name='s2')

    a2 = ng.matmul(a1r,
                   w2,
                   bias=b2,
                   scale=s2,
                   transposed_b=True,
                   act_func=ng.relu,
                   dtype=act_dtype,
                   sum_dtype=ng.int32)

    # layer 3: full-connection, relu
    w3 = ng.variable(weight_dtype, shape=(10, a2.shape[-1]), name='w3')
    b3 = ng.variable(bias_dtype, shape=(w3.shape[0], ), name='b3')
    s3 = ng.variable(scale_dtype, shape=(w3.shape[0], ), name='s3')

    # output
    output_layer = ng.matmul(a2,
                             w3,
                             bias=b3,
                             scale=s3,
                             transposed_b=True,
                             name='output_layer',
                             dtype=act_dtype,
                             sum_dtype=ng.int32)

    # --------------------
    # (2) Assign weights to the NNgen operators
    # --------------------

    # In this example, random floating-point values are assigned.
    # In a real case, you should assign actual weight values
    # obtianed by a training on DNN framework.

    # If you don't you NNgen's quantizer, you can assign integer weights to each tensor.

    w0_value = np.random.normal(size=w0.length).reshape(w0.shape)
    w0_value = np.clip(w0_value, -3.0, 3.0)
    w0.set_value(w0_value)

    b0_value = np.random.normal(size=b0.length).reshape(b0.shape)
    b0_value = np.clip(b0_value, -3.0, 3.0)
    b0.set_value(b0_value)

    s0_value = np.ones(s0.shape)
    s0.set_value(s0_value)

    w1_value = np.random.normal(size=w1.length).reshape(w1.shape)
    w1_value = np.clip(w1_value, -3.0, 3.0)
    w1.set_value(w1_value)

    b1_value = np.random.normal(size=b1.length).reshape(b1.shape)
    b1_value = np.clip(b1_value, -3.0, 3.0)
    b1.set_value(b1_value)

    s1_value = np.ones(s1.shape)
    s1.set_value(s1_value)

    w2_value = np.random.normal(size=w2.length).reshape(w2.shape)
    w2_value = np.clip(w2_value, -3.0, 3.0)
    w2.set_value(w2_value)

    b2_value = np.random.normal(size=b2.length).reshape(b2.shape)
    b2_value = np.clip(b2_value, -3.0, 3.0)
    b2.set_value(b2_value)

    s2_value = np.ones(s2.shape)
    s2.set_value(s2_value)

    w3_value = np.random.normal(size=w3.length).reshape(w3.shape)
    w3_value = np.clip(w3_value, -3.0, 3.0)
    w3.set_value(w3_value)

    b3_value = np.random.normal(size=b3.length).reshape(b3.shape)
    b3_value = np.clip(b3_value, -3.0, 3.0)
    b3.set_value(b3_value)

    s3_value = np.ones(s3.shape)
    s3.set_value(s3_value)

    # Quantizing the floating-point weights by the NNgen quantizer.
    # Alternatively, you can assign integer weights by yourself to each tensor.

    imagenet_mean = np.array([0.485, 0.456, 0.406]).astype(np.float32)
    imagenet_std = np.array([0.229, 0.224, 0.225]).astype(np.float32)

    if act_dtype.width > 8:
        act_scale_factor = 128
    else:
        act_scale_factor = int(round(2**(act_dtype.width - 1) * 0.5))

    input_scale_factors = {'input_layer': act_scale_factor}
    input_means = {'input_layer': imagenet_mean * act_scale_factor}
    input_stds = {'input_layer': imagenet_std * act_scale_factor}

    ng.quantize([output_layer], input_scale_factors, input_means, input_stds)

    # --------------------
    # (3) Assign hardware attributes
    # --------------------

    # conv2d, matmul
    # par_ich: parallelism in input-channel
    # par_och: parallelism in output-channel
    # par_col: parallelism in pixel column
    # par_row: parallelism in pixel row

    a0.attribute(par_ich=par_ich, par_och=par_och)
    a1.attribute(par_ich=par_ich, par_och=par_och)
    a2.attribute(par_ich=par_ich, par_och=par_och)
    output_layer.attribute(par_ich=par_ich, par_och=par_och)

    # cshamt_out: right shift amount after applying bias/scale
    # If you assign integer weights by yourself to each tensor,
    # cshamt (constant shift amount) must be assigned to each operator.

    # a0.attribute(cshamt_out=weight_dtype.width + 1)
    # a1.attribute(cshamt_out=weight_dtype.width + 1)
    # a2.attribute(cshamt_out=weight_dtype.width + 1)
    # output_layer.attribute(cshamt_out=weight_dtype.width + 1)

    # max_pool
    # par: parallelism in in/out channel

    par = par_och

    a0p.attribute(par=par)

    # --------------------
    # (4) Verify the DNN model behavior by executing the NNgen dataflow as a software
    # --------------------

    # In this example, random integer values are assigned.
    # In real case, you should assign actual integer activation values, such as an image.

    input_layer_value = np.random.normal(size=input_layer.length).reshape(
        input_layer.shape)
    input_layer_value = input_layer_value * imagenet_std + imagenet_mean
    input_layer_value = np.clip(input_layer_value, -5.0, 5.0)
    input_layer_value = input_layer_value * act_scale_factor
    input_layer_value = np.clip(input_layer_value,
                                -1 * 2**(act_dtype.width - 1) - 1,
                                2**(act_dtype.width - 1))
    input_layer_value = np.round(input_layer_value).astype(np.int64)

    eval_outs = ng.eval([output_layer], input_layer=input_layer_value)
    output_layer_value = eval_outs[0]

    # print(output_layer_value)
    # breakpoint()

    # --------------------
    # (5) Convert the NNgen dataflow to a hardware description (Verilog HDL and IP-XACT)
    # --------------------

    # to Veriloggen object
    # targ = ng.to_veriloggen([output_layer], 'cnn', silent=silent,
    #                        config={'maxi_datawidth': axi_datawidth})

    # to IP-XACT (the method returns Veriloggen object, as well as to_veriloggen)
    targ = ng.to_ipxact([output_layer],
                        'cnn',
                        silent=silent,
                        config={'maxi_datawidth': axi_datawidth})

    # to Verilog HDL RTL (the method returns a source code text)
    # rtl = ng.to_verilog([output_layer], 'cnn', silent=silent,
    #                    config={'maxi_datawidth': axi_datawidth})

    # --------------------
    # (6) Save the quantized weights
    # --------------------

    # convert weight values to a memory image:
    # on a real FPGA platform, this image will be used as a part of the model definition.

    param_filename = 'hello_nngen.npy'
    chunk_size = 64

    param_data = ng.export_ndarray([output_layer], chunk_size)
    np.save(weight_filename, param_data)

    # --------------------
    # (7) Simulate the generated hardware by Veriloggen and Verilog simulator
    # --------------------

    if simtype is None:
        sys.exit()

    param_bytes = len(param_data)

    variable_addr = int(
        math.ceil((input_layer.addr + input_layer.memory_size) /
                  chunk_size)) * chunk_size
    check_addr = int(math.ceil(
        (variable_addr + param_bytes) / chunk_size)) * chunk_size
    tmp_addr = int(
        math.ceil(
            (check_addr + output_layer.memory_size) / chunk_size)) * chunk_size

    memimg_datawidth = 32
    mem = np.zeros([1024 * 1024 * 256 // (memimg_datawidth // 8)],
                   dtype=np.int64)
    mem = mem + [100]

    # placeholder
    axi.set_memory(
        mem, input_layer_value, memimg_datawidth, act_dtype.width,
        input_layer.addr,
        max(int(math.ceil(axi_datawidth / act_dtype.width)), par_ich))

    # parameters (variable and constant)
    axi.set_memory(mem, param_data, memimg_datawidth, 8, variable_addr)

    # verification data
    axi.set_memory(
        mem, output_layer_value, memimg_datawidth, act_dtype.width, check_addr,
        max(int(math.ceil(axi_datawidth / act_dtype.width)), par_och))

    # test controller
    m = Module('test')
    params = m.copy_params(targ)
    ports = m.copy_sim_ports(targ)
    clk = ports['CLK']
    resetn = ports['RESETN']
    rst = m.Wire('RST')
    rst.assign(Not(resetn))

    # AXI memory model
    if sim_filename is None:
        sim_filename = os.path.splitext(os.path.basename(__file__))[0] + '.out'

    memimg_name = 'memimg_' + sim_filename

    memory = axi.AxiMemoryModel(m,
                                'memory',
                                clk,
                                rst,
                                datawidth=axi_datawidth,
                                memimg=mem,
                                memimg_name=memimg_name,
                                memimg_datawidth=memimg_datawidth)
    memory.connect(ports, 'maxi')

    # AXI-Slave controller
    _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True)
    _saxi.connect(ports, 'saxi')

    # timer
    time_counter = m.Reg('time_counter', 32, initval=0)
    seq = Seq(m, 'seq', clk, rst)
    seq(time_counter.inc())

    def ctrl():
        for i in range(100):
            pass

        ng.sim.set_global_addrs(_saxi, tmp_addr)

        start_time = time_counter.value
        ng.sim.start(_saxi)

        print('# start')

        ng.sim.wait(_saxi)
        end_time = time_counter.value

        print('# end')
        print('# execution cycles: %d' % (end_time - start_time))

        # verify
        ok = True
        for bat in range(output_layer.shape[0]):
            for x in range(output_layer.shape[1]):
                orig = memory.read_word(
                    bat * output_layer.aligned_shape[1] + x, output_layer.addr,
                    act_dtype.width)
                check = memory.read_word(
                    bat * output_layer.aligned_shape[1] + x, check_addr,
                    act_dtype.width)

                if vthread.verilog.NotEql(orig, check):
                    print('NG (', bat, x, ') orig: ', orig, ' check: ', check)
                    ok = False
                else:
                    print('OK (', bat, x, ') orig: ', orig, ' check: ', check)

        if ok:
            print('# verify: PASSED')
        else:
            print('# verify: FAILED')

        vthread.finish()

    th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl)
    fsm = th.start()

    uut = m.Instance(targ,
                     'uut',
                     params=m.connect_params(targ),
                     ports=m.connect_ports(targ))

    # simulation.setup_waveform(m, uut)
    simulation.setup_clock(m, clk, hperiod=5)
    init = simulation.setup_reset(m,
                                  resetn,
                                  m.make_reset(),
                                  period=100,
                                  polarity='low')

    init.add(
        Delay(10000000),
        Systask('finish'),
    )

    # output source code
    if verilog_filename is not None:
        m.to_verilog(verilog_filename)

    # run simulation
    sim = simulation.Simulator(m, sim=simtype)
    rslt = sim.run(outputfile=sim_filename)
    lines = rslt.splitlines()
    if simtype == 'verilator' and lines[-1].startswith('-'):
        rslt = '\n'.join(lines[:-1])
    return rslt
def run(a_shape=(15, 15),
        b_shape=(15, 15),
        a_dtype=ng.int32,
        b_dtype=ng.int32,
        c_dtype=ng.int32,
        par=1,
        axi_datawidth=32,
        silent=False,
        filename=None,
        simtype='iverilog',
        outputfile=None):

    # create target hardware
    a = ng.placeholder(a_dtype, shape=a_shape, name='a')
    b = ng.placeholder(b_dtype, shape=b_shape, name='b')
    c = ng.add(a, b, dtype=c_dtype, par=par, name='c')

    targ = ng.to_ipxact([c],
                        'matrix_add_ipxact',
                        silent=silent,
                        config={'maxi_datawidth': axi_datawidth})

    # verification data
    va = np.arange(a.length, dtype=np.int64).reshape(a.shape) % [5]
    vb = (np.arange(b.length, dtype=np.int64).reshape(b.shape) + [100]) % [6]

    eval_outs = ng.eval([c], a=va, b=vb)
    vc = eval_outs[0]

    # to memory image
    size_max = int(
        math.ceil(
            max(a.memory_size, b.memory_size, c.memory_size) / 4096)) * 4096
    check_addr = max(a.addr, b.addr, c.addr) + size_max
    size_check = size_max
    tmp_addr = check_addr + size_check

    memimg_datawidth = 32
    mem = np.zeros([1024 * 1024 * 8 // (memimg_datawidth // 8)],
                   dtype=np.int64)
    mem = mem + [100]

    axi.set_memory(mem, va, memimg_datawidth, a_dtype.width, a.addr,
                   max(int(math.ceil(axi_datawidth / a_dtype.width)), par))
    axi.set_memory(mem, vb, memimg_datawidth, b_dtype.width, b.addr,
                   max(int(math.ceil(axi_datawidth / b_dtype.width)), par))
    axi.set_memory(mem, vc, memimg_datawidth, c_dtype.width, check_addr,
                   max(int(math.ceil(axi_datawidth / c_dtype.width)), par))

    # test controller
    m = Module('test')
    params = m.copy_params(targ)
    ports = m.copy_sim_ports(targ)
    clk = ports['CLK']
    resetn = ports['RESETN']
    rst = m.Wire('RST')
    rst.assign(Not(resetn))

    # AXI memory model
    if outputfile is None:
        outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out'

    memimg_name = 'memimg_' + outputfile

    memory = axi.AxiMemoryModel(m,
                                'memory',
                                clk,
                                rst,
                                datawidth=axi_datawidth,
                                memimg=mem,
                                memimg_name=memimg_name,
                                memimg_datawidth=memimg_datawidth)
    memory.connect(ports, 'maxi')

    # AXI-Slave controller
    _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True)
    _saxi.connect(ports, 'saxi')

    # timer
    time_counter = m.Reg('time_counter', 32, initval=0)
    seq = Seq(m, 'seq', clk, rst)
    seq(time_counter.inc())

    num_rep = functools.reduce(lambda x, y: x * y, c.shape[:-1], 1)

    def ctrl():
        for i in range(100):
            pass

        ng.sim.set_global_addrs(_saxi, tmp_addr)

        start_time = time_counter.value
        ng.sim.start(_saxi)

        print('# start')

        ng.sim.wait(_saxi)
        end_time = time_counter.value

        print('# end')
        print('# execution cycles: %d' % (end_time - start_time))

        # verify
        ok = True
        for i in range(num_rep):
            for j in range(c.shape[-1]):
                orig = memory.read_word(i * c.aligned_shape[-1] + j, c.addr,
                                        c_dtype.width)
                check = memory.read_word(i * c.aligned_shape[-1] + j,
                                         check_addr, c_dtype.width)

                if vthread.verilog.NotEql(orig, check):
                    print('NG', i, j, orig, check)
                    ok = False
                # else:
                #    print('OK', i, j, orig, check)

        if ok:
            print('# verify: PASSED')
        else:
            print('# verify: FAILED')

        vthread.finish()

    th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl)
    fsm = th.start()

    uut = m.Instance(targ,
                     'uut',
                     params=m.connect_params(targ),
                     ports=m.connect_ports(targ))

    # simulation.setup_waveform(m, uut)
    simulation.setup_clock(m, clk, hperiod=5)
    init = simulation.setup_reset(m,
                                  resetn,
                                  m.make_reset(),
                                  period=100,
                                  polarity='low')

    init.add(
        Delay(1000000),
        Systask('finish'),
    )

    # output source code
    if filename is not None:
        m.to_verilog(filename)

    # run simulation
    sim = simulation.Simulator(m, sim=simtype)
    rslt = sim.run(outputfile=outputfile)
    lines = rslt.splitlines()
    if simtype == 'verilator' and lines[-1].startswith('-'):
        rslt = '\n'.join(lines[:-1])
    return rslt
Example #6
0
                                 scale_ram_size=1024,
                                 out_ram_size=4096)
# --- Generate from conv2d_attribute_ram.j2 ---
L045_layer19_conv_cv_cbs.attribute(input_ram_size=1024,
                                   filter_ram_size=1024,
                                   bias_ram_size=1024,
                                   scale_ram_size=1024,
                                   out_ram_size=4096)
# --- Generate from conv2d_attribute_ram.j2 ---
L051_layer22_conv_cv_cbs.attribute(input_ram_size=1024,
                                   filter_ram_size=1024,
                                   bias_ram_size=1024,
                                   scale_ram_size=1024,
                                   out_ram_size=4096)
# --- Generate from conv2d_attribute_ram.j2 ---
L055_c_layer23_conv_cv.attribute(input_ram_size=1024,
                                 filter_ram_size=1024,
                                 bias_ram_size=1024,
                                 scale_ram_size=1024,
                                 out_ram_size=4096)

_outputs = get_outputs(operators)

m = ng.to_ipxact(_outputs, IPNAME, config=user_config)

post_process({'X_FORCE_DSP': True}, IPNAME)

#print(placeholders)
#print(variables)
#print(operators)
Example #7
0
def run(
        act_dtype=ng.int16,
        weight_dtype=ng.int8,
        bias_dtype=ng.int32,
        scale_dtype=ng.int8,
        disable_fusion=False,
        conv2d_par_ich=1,
        conv2d_par_och=1,
        conv2d_par_col=1,
        conv2d_par_row=1,
        conv2d_concur_och=None,
        conv2d_stationary='filter',
        pool_par=1,
        elem_par=1,
        chunk_size=64,
        axi_datawidth=32,
        silent=False,
        onnx_filename='yolov3-tiny.onnx',
        weight_filename='yolov3-tiny.npy',
        verilog_filename=None,
        sim_filename=None,
        # simtype=None,  # no RTL simulation
        # simtype='iverilog',
        simtype='verilator',
        cfg_filename='yolov3-tiny.cfg',
        weights_filename='yolov3-tiny.weights',
        model_path='yolov3'):

    # input mean and standard deviation
    imagenet_mean = np.array([0.485, 0.456, 0.406]).astype(np.float32)
    imagenet_std = np.array([0.229, 0.224, 0.225]).astype(np.float32)

    img_size = (416, 416)
    act_shape = (1, img_size[0], img_size[1], 3)

    # pytorch model
    model_url = "https://github.com/ultralytics/yolov3"
    if not os.path.isdir(model_path):
        raise FileNotFoundError(
            "Download the YOLOv3 model using Pytorch, such as "
            "'%s'. Then extract it, and rename it as '%s'" %
            (model_url, model_path))

    # Darknet model configuration and pretrained weights
    cfg_url = "https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg"
    if not os.path.isfile(cfg_filename):
        urllib.request.urlretrieve(cfg_url, cfg_filename)

    weights_url = "https://pjreddie.com/media/files/yolov3-tiny.weights"
    if not os.path.isfile(weights_filename):
        urllib.request.urlretrieve(weights_url, weights_filename)

    sys.path.insert(0, model_path)
    import models
    models.ONNX_EXPORT = True

    model = models.Darknet(cfg_filename, img_size).to('cpu')
    models.load_darknet_weights(model, weights_filename)

    # Pytorch to ONNX
    dummy_input = torch.randn(*act_shape).transpose(1, 3)
    input_names = ['act']
    output_names = ['scores', 'boxes']
    model.eval()
    torch.onnx.export(model,
                      dummy_input,
                      onnx_filename,
                      input_names=input_names,
                      output_names=output_names)

    # --------------------
    # (1) Represent a DNN model as a dataflow by NNgen operators
    # --------------------

    # ONNX to NNgen
    dtypes = {}
    shapes = {}
    (outputs, placeholders, variables, constants,
     operators) = ng.from_onnx(onnx_filename,
                               value_dtypes=dtypes,
                               value_shapes=shapes,
                               default_placeholder_dtype=act_dtype,
                               default_variable_dtype=weight_dtype,
                               default_constant_dtype=weight_dtype,
                               default_operator_dtype=act_dtype,
                               default_scale_dtype=scale_dtype,
                               default_bias_dtype=bias_dtype,
                               disable_fusion=disable_fusion,
                               verbose=False)

    # --------------------
    # (2) Assign quantized weights to the NNgen operators
    # --------------------

    if act_dtype.width > 8:
        act_scale_factor = 128
    else:
        act_scale_factor = int(round(2**(act_dtype.width - 1) * 0.5))

    input_scale_factors = {'act': act_scale_factor}
    input_means = {'act': imagenet_mean * act_scale_factor}
    input_stds = {'act': imagenet_std * act_scale_factor}

    ng.quantize(outputs, input_scale_factors, input_means, input_stds)

    # --------------------
    # (3) Assign hardware attributes
    # --------------------

    for op in operators.values():
        if isinstance(op, ng.conv2d):
            op.attribute(par_ich=conv2d_par_ich,
                         par_och=conv2d_par_och,
                         par_col=conv2d_par_col,
                         par_row=conv2d_par_row,
                         concur_och=conv2d_concur_och,
                         stationary=conv2d_stationary)

        if isinstance(op, (ng.avg_pool, ng.max_pool, ng.avg_pool_serial,
                           ng.max_pool_serial)):
            op.attribute(par=pool_par)

        if ng.is_elementwise_operator(op):
            op.attribute(par=elem_par)

    # --------------------
    # (4) Verify the DNN model behavior by executing the NNgen dataflow as a software
    # --------------------

    act = placeholders['act']
    outs = (outputs['scores'], outputs['boxes'])

    # verification data
    img = np.array(PIL.Image.open('car416x416.png').convert('RGB')).astype(
        np.float32)
    img = img.reshape([1] + list(img.shape))

    img = img / 255
    img = (img - imagenet_mean) / imagenet_std

    # execution on pytorch
    model_input = img

    if act.perm is not None:
        model_input = np.transpose(model_input, act.reversed_perm)

    model.eval()
    model_rslts = model(torch.from_numpy(model_input))
    model_outs = [rslt.detach().numpy() for rslt in model_rslts]
    model_outs = [(np.transpose(model_out, act.perm) if act.perm is not None
                   and len(model_out.shape) == len(act.shape) else model_out)
                  for model_out in model_outs]
    scaled_model_outs = [
        model_out * out.scale_factor
        for model_out, out in zip(model_outs, outs)
    ]

    # software-based verification
    vact = img * act_scale_factor
    vact = np.clip(vact, -1.0 * (2**(act.dtype.width - 1) - 1),
                   1.0 * (2**(act.dtype.width - 1) - 1))
    vact = np.round(vact).astype(np.int64)

    # compare outputs of hidden layers
    leaky_relu_ops = [
        v for k, v in operators.items()
        if (isinstance(v, ng.conv2d)
            and isinstance(v.act_func, ng.leaky_relu_base))
    ]
    leaky_relu_ops = list(sorted(set(leaky_relu_ops),
                                 key=leaky_relu_ops.index))

    conv2d_ops = [
        v for k, v in operators.items()
        if (isinstance(v, ng.conv2d) and v.act_func is None)
    ]
    conv2d_ops = list(sorted(set(conv2d_ops), key=conv2d_ops.index))

    # only 1st output
    sub_ops = leaky_relu_ops[:9] + conv2d_ops[:1]
    sub_outs = ng.eval(sub_ops, act=vact)
    sub_outs = [sub_out.transpose([0, 3, 1, 2]) for sub_out in sub_outs]
    sub_scale_factors = [sub_op.scale_factor for sub_op in sub_ops]

    model.eval()
    mouts = []
    # all Conv2d-LeakyReLU layers before YOLOLayer
    mouts.append(
        nn.Sequential(model.module_list[0])(
            torch.from_numpy(model_input)).detach().numpy())
    mouts.append(
        nn.Sequential(*model.module_list[0:3])(
            torch.from_numpy(model_input)).detach().numpy())
    mouts.append(
        nn.Sequential(*model.module_list[0:5])(
            torch.from_numpy(model_input)).detach().numpy())
    mouts.append(
        nn.Sequential(*model.module_list[0:7])(
            torch.from_numpy(model_input)).detach().numpy())
    mouts.append(
        nn.Sequential(*model.module_list[0:9])(
            torch.from_numpy(model_input)).detach().numpy())
    mouts.append(
        nn.Sequential(*model.module_list[0:11])(
            torch.from_numpy(model_input)).detach().numpy())
    mouts.append(
        nn.Sequential(*model.module_list[0:13])(
            torch.from_numpy(model_input)).detach().numpy())
    mouts.append(
        nn.Sequential(*model.module_list[0:14])(
            torch.from_numpy(model_input)).detach().numpy())
    mouts.append(
        nn.Sequential(*model.module_list[0:15])(
            torch.from_numpy(model_input)).detach().numpy())
    mouts.append(
        nn.Sequential(*model.module_list[0:16])(
            torch.from_numpy(model_input)).detach().numpy())

    scaled_mouts = [
        mout * scale_factor
        for mout, scale_factor in zip(mouts, sub_scale_factors)
    ]

    sub_mean_square_errors = [
        np.sum((sub_out - mout)**2) / sub_out.size
        for mout, sub_out in zip(scaled_mouts, sub_outs)
    ]
    sub_corrcoefs = [
        np.corrcoef(mout.reshape([-1]), sub_out.reshape([-1]))
        for mout, sub_out in zip(mouts, sub_outs)
    ]

    # compare prediction results
    vouts = ng.eval(outs, act=vact)

    mean_square_errors = [
        np.sum((vout - scaled_model_out)**2) / vout.size
        for vout, scaled_model_out in zip(vouts, scaled_model_outs)
    ]
    corrcoefs = [
        np.corrcoef(model_out.reshape([-1]), vout.reshape([-1]))
        for model_out, vout in zip(model_outs, vouts)
    ]

    # breakpoint()

    # --------------------
    # (5) Convert the NNgen dataflow to a hardware description (Verilog HDL and IP-XACT)
    # --------------------

    # to Veriloggen object
    # targ = ng.to_veriloggen(outs, 'yolov3tiny', silent=silent,
    #                        config={'maxi_datawidth': axi_datawidth})

    # to IP-XACT (the method returns Veriloggen object, as well as to_veriloggen)
    targ = ng.to_ipxact(outs,
                        'yolov3tiny',
                        silent=silent,
                        config={'maxi_datawidth': axi_datawidth})

    # to Verilog HDL RTL (the method returns a source code text)
    # rtl = ng.to_verilog(outs, 'yolov3tiny', silent=silent,
    #                    config={'maxi_datawidth': axi_datawidth})

    # --------------------
    # (6) Save the quantized weights
    # --------------------
    param_data = ng.export_ndarray(outs, chunk_size)
    param_bytes = len(param_data)
    np.save(weight_filename, param_data)

    # --------------------
    # (7) Simulate the generated hardware by Veriloggen and Verilog simulator
    # --------------------

    if simtype is None:
        sys.exit()

    variable_addr = int(math.ceil(
        (act.addr + act.memory_size) / chunk_size)) * chunk_size
    check0_addr = int(math.ceil(
        (variable_addr + param_bytes) / chunk_size)) * chunk_size
    check1_addr = int(
        math.ceil(
            (check0_addr + outs[0].memory_size) / chunk_size)) * chunk_size
    tmp_addr = int(math.ceil(
        (check1_addr + outs[1].memory_size) / chunk_size)) * chunk_size

    memimg_datawidth = 32
    # mem = np.zeros([1024 * 1024 * 256 // (memimg_datawidth // 8)], dtype=np.int64)
    mem = np.zeros([1024 * 1024 * 256 // (memimg_datawidth // 8)],
                   dtype=np.int16)
    mem = mem + [100]

    # placeholder
    axi.set_memory(
        mem, vact, memimg_datawidth, act_dtype.width, act.addr,
        max(int(math.ceil(axi_datawidth / act_dtype.width)), conv2d_par_ich))

    # parameters (variable and constant)
    axi.set_memory(mem, param_data, memimg_datawidth, 8, variable_addr)

    # verification data
    axi.set_memory(
        mem, vouts[0], memimg_datawidth, act_dtype.width, check0_addr,
        max(int(math.ceil(axi_datawidth / act_dtype.width)), conv2d_par_och))
    axi.set_memory(
        mem, vouts[1], memimg_datawidth, act_dtype.width, check1_addr,
        max(int(math.ceil(axi_datawidth / act_dtype.width)), conv2d_par_och))

    # test controller
    m = Module('test')
    params = m.copy_params(targ)
    ports = m.copy_sim_ports(targ)
    clk = ports['CLK']
    resetn = ports['RESETN']
    rst = m.Wire('RST')
    rst.assign(Not(resetn))

    # AXI memory model
    if sim_filename is None:
        sim_filename = os.path.splitext(os.path.basename(__file__))[0] + '.out'

    memimg_name = 'memimg_' + sim_filename

    memory = axi.AxiMemoryModel(m,
                                'memory',
                                clk,
                                rst,
                                datawidth=axi_datawidth,
                                memimg=mem,
                                memimg_name=memimg_name,
                                memimg_datawidth=memimg_datawidth)
    memory.connect(ports, 'maxi')

    # AXI-Slave controller
    _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True)
    _saxi.connect(ports, 'saxi')

    # timer
    time_counter = m.Reg('time_counter', 32, initval=0)
    seq = Seq(m, 'seq', clk, rst)
    seq(time_counter.inc())

    def ctrl():
        for i in range(100):
            pass

        ng.sim.set_global_addrs(_saxi, tmp_addr)

        start_time = time_counter.value
        ng.sim.start(_saxi)

        print('# start')

        ng.sim.wait(_saxi)
        end_time = time_counter.value

        print('# end')
        print('# execution cycles: %d' % (end_time - start_time))

        # verify
        ok = True
        for bat in range(outs[0].shape[0]):
            for x in range(outs[0].shape[1]):
                orig = memory.read_word(bat * outs[0].aligned_shape[1] + x,
                                        outs[0].addr, act_dtype.width)
                check = memory.read_word(bat * outs[0].aligned_shape[1] + x,
                                         check0_addr, act_dtype.width)

                if vthread.verilog.NotEql(orig, check):
                    print('NG (', bat, x, ') orig: ', orig, ' check: ', check)
                    ok = False
                # else:
                #    print('OK (', bat, x,
                #          ') orig: ', orig, ' check: ', check)

        for bat in range(outs[1].shape[0]):
            for x in range(outs[1].shape[1]):
                orig = memory.read_word(bat * outs[1].aligned_shape[1] + x,
                                        outs[1].addr, act_dtype.width)
                check = memory.read_word(bat * outs[1].aligned_shape[1] + x,
                                         check1_addr, act_dtype.width)

                if vthread.verilog.NotEql(orig, check):
                    print('NG (', bat, x, ') orig: ', orig, ' check: ', check)
                    ok = False
                # else:
                #    print('OK (', bat, x,
                #          ') orig: ', orig, ' check: ', check)

        if ok:
            print('# verify: PASSED')
        else:
            print('# verify: FAILED')

        vthread.finish()

    th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl)
    fsm = th.start()

    uut = m.Instance(targ,
                     'uut',
                     params=m.connect_params(targ),
                     ports=m.connect_ports(targ))

    # simulation.setup_waveform(m, uut)
    simulation.setup_clock(m, clk, hperiod=5)
    init = simulation.setup_reset(m,
                                  resetn,
                                  m.make_reset(),
                                  period=100,
                                  polarity='low')

    init.add(
        Delay(10000000),
        Systask('finish'),
    )

    # output source code
    if verilog_filename is not None:
        m.to_verilog(verilog_filename)

    # run simulation
    sim = simulation.Simulator(m, sim=simtype)
    rslt = sim.run(outputfile=sim_filename)
    lines = rslt.splitlines()
    if simtype == 'verilator' and lines[-1].startswith('-'):
        rslt = '\n'.join(lines[:-1])
    return rslt