def test_grid_search(): gridsearch = strategy.GridSearch() engine = MockExecutionEngine() _reset_execution_engine(engine) gridsearch.run(*_get_model_and_mutators()) wait_models(*engine.models) selection = set() for model in engine.models: selection.add((model.graphs['_model__fc1'].hidden_nodes[0].operation. parameters['bias'], model.graphs['_model__fc2']. hidden_nodes[0].operation.parameters['bias'])) assert len(selection) == 4 _reset_execution_engine()
def test_random_search(): random = strategy.Random() engine = MockExecutionEngine() _reset_execution_engine(engine) random.run(*_get_model_and_mutators()) wait_models(*engine.models) selection = set() for model in engine.models: selection.add(( model.get_node_by_name('_model__fc1').operation.parameters['bias'], model.get_node_by_name('_model__fc2').operation.parameters['bias'] )) assert len(selection) == 4 _reset_execution_engine()
def test_evolution(): evolution = strategy.RegularizedEvolution(population_size=5, sample_size=3, cycles=10, mutation_prob=0.5, on_failure='ignore') engine = MockExecutionEngine(failure_prob=0.2) _reset_execution_engine(engine) evolution.run(*_get_model_and_mutators()) wait_models(*engine.models) _reset_execution_engine() evolution = strategy.RegularizedEvolution(population_size=5, sample_size=3, cycles=10, mutation_prob=0.5, on_failure='worst') engine = MockExecutionEngine(failure_prob=0.4) _reset_execution_engine(engine) evolution.run(*_get_model_and_mutators()) wait_models(*engine.models) _reset_execution_engine()
def test_rl(): rl = strategy.PolicyBasedRL(max_collect=2, trial_per_collect=10) engine = MockExecutionEngine(failure_prob=0.2) _reset_execution_engine(engine) rl.run(*_get_model_and_mutators(diff_size=True)) wait_models(*engine.models) _reset_execution_engine() rl = strategy.PolicyBasedRL(max_collect=2, trial_per_collect=10) engine = MockExecutionEngine(failure_prob=0.2) _reset_execution_engine(engine) rl.run(*_get_model_and_mutators()) wait_models(*engine.models) _reset_execution_engine()