Example #1
0
def test_multibox_transform_loc():
    batch_size = 1
    num_anchors = 3
    num_classes = 3
    cls_prob = sym.Variable("cls_prob")
    loc_preds = sym.Variable("loc_preds")
    anchors = sym.Variable("anchors")
    transform_loc_data, valid_count = sym.multibox_transform_loc(cls_prob=cls_prob, loc_pred=loc_preds,
                                                                 anchor=anchors)
    out = sym.nms(data=transform_loc_data, valid_count=valid_count)

    # Manually create test case
    np_cls_prob = np.array([[[0.2, 0.5, 0.3], [0.25, 0.3, 0.45], [0.7, 0.1, 0.2]]])
    np_loc_preds = np.array([[0.1, -0.2, 0.3, 0.2, 0.2, 0.4, 0.5, -0.3, 0.7, -0.2, -0.4, -0.8]])
    np_anchors = np.array([[[-0.1, -0.1, 0.1, 0.1], [-0.2, -0.2, 0.2, 0.2], [1.2, 1.2, 1.5, 1.5]]])

    expected_np_out = np.array([[[1, 0.69999999, 0, 0, 0.10818365, 0.10008108],
                                 [0, 0.44999999, 1, 1, 1, 1],
                                 [0, 0.30000001, 0, 0, 0.22903419, 0.20435292]]])

    target = "llvm"
    dtype = "float32"
    ctx = tvm.cpu()
    graph, lib, _ = nnvm.compiler.build(out, target, {"cls_prob": (batch_size, num_anchors, num_classes),
                                                      "loc_preds": (batch_size, num_anchors * 4),
                                                      "anchors": (1, num_anchors, 4)})
    m = graph_runtime.create(graph, lib, ctx)
    m.set_input(**{"cls_prob": np_cls_prob.astype(dtype), "loc_preds": np_loc_preds.astype(dtype), "anchors": np_anchors.astype(dtype)})
    m.run()
    out = m.get_output(0, tvm.nd.empty(expected_np_out.shape, dtype))
    np.testing.assert_allclose(out.asnumpy(), expected_np_out, atol=1e-5, rtol=1e-5)
def get_multibox_detection_output(np_cls_prob, np_loc_preds, np_anchors,
                                  batch_size, num_anchors, num_classes):
    import nnvm.symbol as sym
    cls_prob = sym.Variable("cls_prob")
    loc_preds = sym.Variable("loc_preds")
    anchors = sym.Variable("anchors")
    transform_loc_data, valid_count = sym.multibox_transform_loc(
        cls_prob=cls_prob, loc_pred=loc_preds, anchor=anchors)
    out = sym.nms(data=transform_loc_data, valid_count=valid_count)

    target = "llvm"
    dtype = "float32"
    ctx = tvm.cpu()
    graph, lib, _ = nnvm.compiler.build(
        out, target, {
            "cls_prob": (batch_size, num_classes, num_anchors),
            "loc_preds": (batch_size, num_anchors * 4),
            "anchors": (1, num_anchors, 4)
        })
    m = graph_runtime.create(graph, lib, ctx)
    m.set_input(**{
        "cls_prob": np_cls_prob,
        "loc_preds": np_loc_preds,
        "anchors": np_anchors
    })
    m.run()

    _, out_shape = nnvm.compiler.graph_util.infer_shape(graph,
                                                        shape={"data": dshape})
    out = m.get_output(0, tvm.nd.empty(
        tuple(out_shape[0]),
        dtype))  # output of "mbox_conf_softmax", shape: (1, 21, 8732)
    return out
Example #3
0
def test_multibox_transform_loc():
    batch_size = 1
    num_anchors = 3
    num_classes = 3
    cls_prob = sym.Variable("cls_prob")
    loc_preds = sym.Variable("loc_preds")
    anchors = sym.Variable("anchors")
    transform_loc_data, valid_count = sym.multibox_transform_loc(cls_prob=cls_prob, loc_pred=loc_preds,
                                                                 anchor=anchors)
    out = sym.non_max_suppression(data=transform_loc_data, valid_count=valid_count, return_indices=False)

    # Manually create test case
    np_cls_prob = np.array([[[0.2, 0.5, 0.3], [0.25, 0.3, 0.45], [0.7, 0.1, 0.2]]])
    np_loc_preds = np.array([[0.1, -0.2, 0.3, 0.2, 0.2, 0.4, 0.5, -0.3, 0.7, -0.2, -0.4, -0.8]])
    np_anchors = np.array([[[-0.1, -0.1, 0.1, 0.1], [-0.2, -0.2, 0.2, 0.2], [1.2, 1.2, 1.5, 1.5]]])

    expected_np_out = np.array([[[1, 0.69999999, 0, 0, 0.10818365, 0.10008108],
                                 [0, 0.44999999, 1, 1, 1, 1],
                                 [0, 0.30000001, 0, 0, 0.22903419, 0.20435292]]])

    dtype = "float32"
    for target, ctx in ctx_list():
        graph, lib, _ = nnvm.compiler.build(out, target, {"cls_prob": (batch_size, num_anchors, num_classes),
                                                          "loc_preds": (batch_size, num_anchors * 4),
                                                          "anchors": (1, num_anchors, 4)})
        m = graph_runtime.create(graph, lib, ctx)
        m.set_input(**{"cls_prob": np_cls_prob.astype(dtype), "loc_preds": np_loc_preds.astype(dtype), "anchors": np_anchors.astype(dtype)})
        m.run()
        tvm_out = m.get_output(0, tvm.nd.empty(expected_np_out.shape, dtype))
        tvm.testing.assert_allclose(tvm_out.asnumpy(), expected_np_out, atol=1e-5, rtol=1e-5)