def __init__(self, num_in_ch, num_out_ch, kernel, stride=1, pad=0, use_bias=True): """ 引数 num_in_ch 入力チャンネル数 num_out_ch 出力チャンネル数 kernel カーネルサイズ strid ストライドサイズ pad ゼロパディング数 use_bias biasを使うかどうか """ super(Convolution2D, self).__init__() self.kernel = kernel self.stride = stride self.pad = pad self.use_bias = use_bias self.parameters = { "W": node.Node(np.random.randn(num_out_ch, num_in_ch, kernel, kernel).astype(np.float32), name="W") } if use_bias: self.parameters["b"] = node.Node(np.zeros(num_out_ch, dtype=np.float32), name="b")
def stack(mini_batch): inputs, targets = [], [] for input, target in mini_batch: inputs.append(input) targets.append(target) return (node.Node(np.array(inputs), off=True), node.Node(np.array(targets), off=True))
def __init__(self, num_in_units, num_h_units): super(Linear, self).__init__() self.parameters = { "W": node.Node(np.random.randn(num_in_units, num_h_units).astype(np.float32), name="W"), "b": node.Node(np.zeros(num_h_units, dtype=np.float32), name="b") }
def _construct(self): """ 构建系统 :return: """ """1)创建通道""" for _ch in self.structure["channel"]: _c = channel.Channel(_ch) self.R.add_channel(_c) """2)创建节点""" for _nd in self.structure["node"]: _n = node.Node(_nd) _n.add_function(self.structure["node"][_nd]["function"]) self.R.add_node(_n) """创建输入通道""" if "input" in self.structure["node"][_nd]: for _ch in self.structure["node"][_nd]["input"]: _n.add_in_channel(_ch) """创建输出通道""" if "output" in self.structure["node"][_nd]: for _ch in self.structure["node"][_nd]["output"]: _n.add_out_channel(_ch) if "init" in self.structure["node"][_nd]: _events = self.structure["node"][_nd]["init"]() _q = self.R.get_channel(_ch) for _e in _events: _q.in_q(_e) """创建同步器""" if "synchronizer" in self.structure["node"][_nd]: if self.structure["node"][_nd]["synchronizer"]: _sync = synchronizer.Synchronizer() _n.add_synchronizer(_sync)
def __init__(self, num_in_units, alpha=0.9, eps=1e-5): """ 引数 num_in_units ユニット数(入力が4Dの時はチャンネル数) alpha 移動平均の更新率をコントロール eps ゼロ除算を防ぐ """ super(BatchNormalization, self).__init__() self.parameters = { "W": node.Node(np.random.randn(num_in_units).astype(np.float32), name="W"), "b": node.Node(np.zeros(num_in_units, dtype=np.float32), name="b") } self.alpha = alpha self.eps = eps self.running_mu = node.Node(np.zeros(num_in_units, dtype=np.float32)) self.running_var = node.Node(np.ones(num_in_units, dtype=np.float32))
def create_node(): # Instantiate node pin = node.Node() # Set node params pin.node_name = 'Current monitoring dashboard' pin.node_description = 'Current trend monitoring system' pin.node_number = 'N1_1507' pin.host_ip = '127.0.0.1' # pin.host_ip = '192.168.3.250' pin.host_port = '502' # Load register map # map = pin.load_register_map() # Connect with slave pin.connect() # Create and connect to db engine = create_engine('sqlite:///database/current_data.db', echo=False) # Initiate the basic page return pin, map, engine
def set_up_nodes(self): config_list = self.config_list if not config_list: config_name = utility.camel_to_snake(self.__class__.__name__) try: with open('./config_jsons/' + config_name + '.json') as config_file: self.config_list = json.load(config_file) except FileNotFoundError: raise FileNotFoundError( 'need a file named ' + config_name + '.json,' + 'or you can pass in your node configurations parameter when ELATestMetaClass is Initialized' ) project_path = os.environ.get('GOPATH') + '/'.join(config.ELA_PATH) print("source code path:", project_path) node_path = "%s/elastos_test_runner_%s" % ( "./test", datetime.datetime.now().strftime("%Y%m%d_%H%M%S")) os.makedirs(node_path) print("Temp dir is:", node_path) nodes_list = [] for index, item in enumerate(self.config_list): name = item['name'] path = os.path.join(node_path, name + str(index)) os.makedirs(path) shutil.copy(os.path.join(project_path, name), os.path.join(path)) configuration = item['config'] with open(path + '/config.json', 'w+') as f: f.write(json.dumps(configuration, indent=4)) nodes_list.append( node.Node(i=index, dirname=node_path, configuration=configuration['Configuration'])) return nodes_list
def __init__(self, num_in_ch, num_out_ch, kernel, stride=1, pad=0): """ 引数 num_in_ch 上で示される関係性においてinputのチャンネル数 num_out_ch 上で示される関係性においてoutputのチャンネル数 kernel カーネルサイズ stride ストライドサイズ pad ゼロパディング数 """ super(TransposedConvolution2D, self).__init__() self.num_in_ch = num_in_ch self.num_out_ch = num_out_ch self.kernel = kernel self.stride = stride self.pad = pad self.parameters = { "W": node.Node(np.random.randn(num_in_ch, num_out_ch, kernel, kernel).astype(np.float32), name="W") }
print(str10) print(perc_list[9]) print(str11) print(perc_list[10]) print(str12) print(perc_list[11]) print(str13) print(perc_list[12]) print(str14) print(perc_list[13]) print(str15) print(perc_list[14]) print("creating Node_a....") Node_a = nd.Node("juan0o_") print("creating Node_b....") Node_b = nd.Node("alejandrouribe718") print("\nThis is the name to Node_a__________________________\n") print(Node_a.get_name()) print("\nThis is the follow list Node_a__________________________\n") print(Node_a.get_follow_list()) print("\nThis is the following list Node_a__________________________\n") print(Node_a.get_following_list()) print(Node_a.get_biography()) print("\nThis is the biography Node_a__________________________\n") print("\nThis is numLikes to Node_a__________________________\n") print(Node_a.get_likes()) print( "\nNow the realationship algorithm between Node_a and Node_b__________________________\n" )