def test_salt(filename, result_dir): """2.3.4 Salt noise and denoising""" im = Image.open(filename) def savewith(result, name): result_path = os.path.join(result_dir, name) result.save(result_path) print '[Saved] ' + result_path # add salt noise with ps=0.2 ps = 0.2 noisy = add_noise(im, 'sap', ps=ps) savewith(noisy, 'salt-%d.png' % (int(100 * ps))) # contraharmonic filtering q_neg, q_pos = 1.5, -1.5 q_neg_name, q_pos_name = [str(q).replace('.', '-') for q in (q_neg, q_pos)] # Q < 0 result = contraharmonic_mean(noisy, (3, 3), q_neg) savewith(result, 'salt-contraharmonic-%s.png' % q_neg_name) # Q > 0 result = contraharmonic_mean(noisy, (3, 3), q_pos) savewith(result, 'salt-contraharmonic-%s.png' % q_pos_name)
def test_gauss(filename, result_dir): """2.3.3 Guassian noise and denoising""" im = Image.open(filename) def savewith(result, name): result_path = os.path.join(result_dir, name) result.save(result_path) print '[Saved] ' + result_path # generate guassian noise mean, var = 0, 40 noisy = add_noise(im, 'gauss', mean=mean, var=var) savewith(noisy, 'gauss-%d-%d.png' % (mean, var)) # arithmetic mean filtering result = arithmetic_mean(noisy, (3, 3)) savewith(result, 'gauss-arithmetic.png') # geometric mean filtering result = geometric_mean(noisy, (3, 3)) savewith(result, 'gauss-geometric.png') # harmonic mean filtering result = harmonic_mean(noisy, (3, 3)) savewith(result, 'gauss-harmonic.png') # contraharmonic mean filtering result = contraharmonic_mean(noisy, (3, 3), -1.5) savewith(result, 'gauss-contraharmonic.png') # median filtering result = median_filter(noisy, (3, 3)) savewith(result, 'gauss-median.png')
def main(input_string): print('Input Value: ', input_string) freq_mat = huffman_coding.read_the_freq_matrix() mapping = huffman_coding.create_mapping(freq_mat) huffman_encoded_value = huffman_coding.perform_huffman_coding( input_string, mapping) print('Huffman Encoded Value: ', huffman_encoded_value) on_the_other_side_of_the_network = pass_from_the_network( huffman_encoded_value) print('After passing the network: ', on_the_other_side_of_the_network) after_adding_noise = noise.add_noise(on_the_other_side_of_the_network) print('After adding noise: ', after_adding_noise) minimum_error, viterbi_decoded_value = viterbi_decoder.perform_viterbi_decoding( after_adding_noise) print('After Viterbi decoding: ', viterbi_decoded_value) final_result = huffman_coding.perform_huffman_decoding( viterbi_decoded_value, mapping) print('After huffman decoding: ', final_result)
def test_sap(filename, result_dir): """2.3.5 Salt-and-pepper noise and denoising""" im = Image.open(filename) def savewith(result, name): result_path = os.path.join(result_dir, name) result.save(result_path) print '[Saved] ' + result_path # add salt-and-pepper noise with ps=pp=0.2 ps, pp = 0.2, 0.2 noisy = add_noise(im, 'sap', ps=ps, pp=pp) savewith(noisy, 'sap-%d-%d.png' % (int(100 * ps), int(100 * pp))) # arithmetic mean filtering result = arithmetic_mean(noisy, (3, 3)) savewith(result, 'sap-arithmetic.png') # harmonic mean filtering result = harmonic_mean(noisy, (3, 3)) savewith(result, 'sap-harmonic.png') # contraharmonic mean filtering result = contraharmonic_mean(noisy, (3, 3), 0.5) savewith(result, 'sap-contraharmonic.png') # max filtering result = max_filter(noisy, (3, 3)) savewith(result, 'sap-max.png') # min filtering result = min_filter(noisy, (3, 3)) savewith(result, 'sap-min.png') # median filtering result = median_filter(noisy, (3, 3)) savewith(result, 'sap-median.png')
def read_file_cpu(trainset, queue, batch_size, num_prepare, rseed=None): local_random = np.random.RandomState(rseed) n_train = len(trainset) trainset_index = local_random.permutation(n_train) idx = 0 while True: # read in data if the queue is too short while queue.full() == False: batch = np.zeros([batch_size, img_size, img_size, 3]) noisy_batch = np.zeros([batch_size, img_size, img_size, 3]) for i in range(batch_size): image_path = trainset[trainset_index[idx + i]] img = sp.misc.imread(image_path) # <Note> In our original code used to generate the results in the paper, we directly # resize the image directly to the input dimension via (for both ms-celeb-1m and imagenet) img = sp.misc.imresize( img, [img_size, img_size]).astype(float) / 255.0 # The following code crops random-sized patches (may be useful for imagenet) #img_shape = img.shape #min_edge = min(img_shape[0], img_shape[1]) #min_resize_ratio = float(img_size) / float(min_edge) #max_resize_ratio = min_resize_ratio * 2.0 #resize_ratio = local_random.rand() * (max_resize_ratio - min_resize_ratio) + min_resize_ratio #img = sp.misc.imresize(img, resize_ratio).astype(float) / 255.0 #crop_loc_row = local_random.randint(img.shape[0]-img_size+1) #crop_loc_col = local_random.randint(img.shape[1]-img_size+1) #if len(img.shape) == 3: #img = img[crop_loc_row:crop_loc_row+img_size, crop_loc_col:crop_loc_col+img_size,:] #else: #img = img[crop_loc_row:crop_loc_row+img_size, crop_loc_col:crop_loc_col+img_size] if np.prod(img.shape) == 0: img = np.zeros([img_size, img_size, 3]) if len(img.shape) < 3: img = np.expand_dims(img, axis=2) img = np.tile(img, [1, 1, 3]) ## random flip #flip_prob = local_random.rand() #if flip_prob < 0.5: #img = img[-1:None:-1,:,:] #flip_prob = local_random.rand() #if flip_prob < 0.5: #img = img[:,-1:None:-1,:] # add noise to img noisy_img = add_noise( img, local_random, std=std, uniform_max=uniform_noise_max, min_spatially_continuous_noise_factor= min_spatially_continuous_noise_factor, max_spatially_continuous_noise_factor= max_spatially_continuous_noise_factor, continuous_noise=continuous_noise, use_spatially_varying_uniform_on_top= use_spatially_varying_uniform_on_top, clip_input=clip_input, clip_input_bound=clip_input_bound) batch[i] = img noisy_batch[i] = noisy_img batch *= 2.0 batch -= 1.0 noisy_batch *= 2.0 noisy_batch -= 1.0 if clip_input > 0: batch = np.clip(batch, a_min=-clip_input_bound, a_max=clip_input_bound) noisy_batch = np.clip(noisy_batch, a_min=-clip_input_bound, a_max=clip_input_bound) queue.put([batch, noisy_batch]) # block until free slot is available idx += batch_size if idx > n_train: #reset when last batch is smaller than batch_size or reaching the last batch trainset_index = local_random.permutation(n_train) idx = 0
def main(): # COMMAND LINE ARGUMENTS args = parse_command_line() print "\nCARMENES Spectrum Forward Simulator (CSFS v%s)" % __version__ # INITIALIZE SPECTRAL ARM arm = SpectralArm(args) # SIMULATION START TIMES t1 = time.time() sim_start = time.strftime("%a, %d, %b %Y %H:%M:%S + 0000", time.gmtime()) if arm.fib_simmode[0] not in arm.SIM_LIST or arm.fib_simmode[1] not in arm.SIM_LIST: raise ValueError for i in xrange(len(arm.fib_simmode)): #fiber = i simmode = arm.fib_simmode[i] #simmodetype = arm.simmodetypes[i] # seems unnecessary if simmode is '0': arm.slittyp = "0D point-source" arm.add_image(np.zeros(arm.CCD_DIMS, dtype=np.uint16)) elif simmode is 'B': arm.slittyp = "0D point-source" arm.fiber_description = 'bias frame' arm.fib_obstype = ['BIAS', 'BIAS'] arm.fib_src = ['BIAS', 'BIAS'] arm.add_image(np.zeros(arm.CCD_DIMS, dtype=np.uint16)) else: print "Initializing Fiber %s" % arm.fib_char[i] wavemap = False if simmode is 'C': arm.fiber_description = 'Laser Comb Spectrum' fn = "MODELS/COMB/comb.npy" wavelengths, intensities = np.load(fn) inds = (wavelengths >= arm.wmin) & (wavelengths <= arm.wmax) wavelengths = wavelengths[inds] intensities = intensities[inds] if arm.SAMPLING == "grid": wf.wavegrid( arm, wavelengths=wavelengths, intensities=intensities, assign=True, telluric=False) elif arm.SAMPLING == "mc": arm.wavelengths = wavelengths arm.intensities = intensities if arm.fib_rv[i]: arm.wavelengths = redshift(arm.wavelengths, arm.fib_rv[i]) arm.infiles[i] = fn arm.fib_obstype[i] = 'WAVE' arm.fib_src[i] = 'COMB' elif simmode is 'F': arm.fiber_description = 'flatfield spectrum simulation' arm.wavelengths = wf.calculate_wavelengths(arm, mode='CCD', nwaves=arm.nw) arm.intensities = np.ones(arm.wavelengths.size) arm.fib_obstype[i] = 'FLAT' arm.fib_src[i] = 'HAL' elif simmode is 'L': if len(arm.infiles[i]) is not 1: raise ValueError print 'loading %s' % (arm.infiles[i][0]) arm.fiber_description = 'emission line list spectrum simulation' wavelengths, intensities = np.loadtxt(arm.infiles[i][0], unpack=True) #wavelengths, intensities = np.load(arm.infiles[i][0]) wavelengths *= 1.0e-7 # convert Ang to mm @MZ inds = np.where((wavelengths >= arm.wmin) & (wavelengths <= arm.wmax)) arm.wavelengths = wavelengths[inds] arm.intensities = intensities[inds] if arm.fib_rv[i]: arm.wavelengths = redshift(arm.wavelengths, arm.fib_rv[i]) elif simmode is 'P': arm.fiber_description = """PHOENIX model spectrum simulation: T_eff=3000 K, [Fe/H]=0.0, log(g)=5.0""" wavelengths = np.load('phx_wavelengths.npy') intensities = np.load('phx_intensities.npy') inds = (wavelengths >= arm.wmin) & (wavelengths <= arm.wmax) wavelengths = wavelengths[inds] intensities = intensities[inds] if arm.SAMPLING == 'grid': wf.wavegrid( arm, wavelengths=wavelengths, intensities=intensities, assign=True, telluric=arm.tell) elif arm.SAMPLING == 'mc': arm.wavelengths = wavelengths arm.intensities = intensities if arm.fib_rv[i]: arm.wavelengths = redshift(arm.wavelengths, arm.fib_rv[i]) if arm.tell: arm.intensities = wf.convolve_telluric_lines( arm, arm.wavelengths, arm.intensities) arm.infiles[i] = ['phx_wavelengths.npy', 'phx_intensities.npy'] arm.catg = 'SCI' arm.fib_obstype[i] = 'STAR' arm.fib_src[i] = 'OBJ' arm.sciobject = 'PHOE_lte03000-5.00-0.0' elif simmode is 'S': if len(arm.infiles[i]) == 1: try: wavelengths, intensities = pyfits.getdata(arm.infiles[i][0]) except IOError: wavelengths, intensities = np.loadtxt(arm.infiles[i][0], unpack=True) elif len(arm.infiles[i]) == 2: try: wavelengths = pyfits.getdata(arm.infiles[i][0]) intensities = pyfits.getdata(arm.infiles[i][1]) except IOError: wavelengths = np.loadtxt(arm.infiles[i][0]) intensities = np.loadtxt(arm.infiles[i][1]) elif len(arm.infiles[i]) not in [1, 2]: raise AttributeError("Please specify an input wavelength file and input flux/counts file.") arm.fiber_description = 'object spectrum simulation' wavelengths *= 1.0e-7 # convert Ang to mm inds = (wavelengths >= arm.wmin) & (wavelengths <= arm.wmax) wavelengths = wavelengths[inds] intensities = intensities[inds] # wavelength sampling, add telluric lines if arm.SAMPLING == 'grid': wf.wavegrid( arm, wavelengths=wavelengths, intensities=intensities, assign=True, telluric=arm.tell) elif arm.SAMPLING == 'mc': arm.wavelengths = wavelengths arm.intensities = intensities if arm.fib_rv[i]: arm.wavelengths = redshift(arm.wavelengths, arm.fib_rv[i]) if arm.tell: arm.intensities = wf.convolve_telluric_lines( arm, arm.wavelengths, arm.intensities) arm.fib_obstype[i] = 'STAR' arm.fib_src[i] = 'OBJ' elif simmode is 'T': from importtharlines import import_thar_lines arm.fiber_description = 'Thorium Argon line list' wavelengths, intensities = import_thar_lines() inds = (wavelengths >= arm.wmin) & (wavelengths <= arm.wmax) arm.wavelengths = wavelengths[inds] arm.intensities = intensities[inds] if arm.fib_rv[i]: arm.wavelengths = redshift(arm.wavelengths, arm.fib_rv[i]) arm.infiles[i] = "Lovis,2007; Kerber,2008" arm.fib_obstype[i] = 'WAVE' arm.fib_src[i] = 'ThAr' elif simmode is 'U': arm.fiber_description = 'Uranium Neon calibration lamp' fn = "MODELS/UNE/une.npy" arm.infiles[i] = fn wavelengths, intensities = np.load(fn) inds = (wavelengths >= arm.wmin) & (wavelengths <= arm.wmax) wavelengths = wavelengths[inds] intensities = intensities[inds] if arm.fib_rv[i]: wavelengths = redshift(wavelengths, arm.fib_rv[i]) if arm.SAMPLING == "grid": wf.wavegrid( arm, wavelengths=wavelengths, intensities=intensities, assign=True, telluric=False) elif arm.SAMPLING == "mc": arm.wavelengths = wavelengths arm.intensities = intensities arm.fib_obstype[i] = 'WAVE' arm.fib_src[i] = 'UNe' elif simmode is 'W': arm.fiber_description = 'wavelength mapping' arm.wavelengths = wf.calculate_wavelengths(arm, mode='CCD', nwaves=arm.nw) arm.intensities = arm.wavelengths if arm.fib_rv[i]: arm.wavelengths = redshift(arm.wavelengths, arm.fib_rv[i]) arm.wavemap = True arm.fib_obstype[i] = 'WAVE' arm.fib_src[i] = 'WAVE' elif simmode is 'X': arm.fiber_description = 'Fabry-Perot spectrum simulation' # arm.wavelengths = np.load('phx_wavelengths.npy') # print arm.wavelengths arm.wavelengths = wf.calculate_wavelengths(arm, mode='CCD', nwaves=arm.nw) arm.intensities = fabry_perot(arm.wavelengths) if arm.fib_rv[i]: arm.wavelengths = redshift(arm.wavelengths, arm.fib_rv[i]) arm.fib_obstype[i] = 'WAVE' arm.fib_src[i] = 'FP' ## APPLY RV SHIFT TO WAVELENGTHS #if arm.fib_rv[i]: #arm.wavelengths = redshift(arm.wavelengths, arm.fib_rv[i]) # @MZ arm.fib_rv[fiber] not fiber # RUN SIMULATION sim_general(arm, i) print "Fiber %s simulation finished\n" % arm.fib_char[i] # PROCESS ARRAYS INTO A SINGLE IMAGE / ADD NOISE arm.add_full_sim_time(sim_start) # start time arm.add_full_sim_time(time.time() - t1) # finish time arm.image = arm.images[0] + arm.images[1] # final image array # ADD NOISE # if arm.noise: add_noise(arm) # prevents value overflow wraparound arm.image[arm.image > np.iinfo(np.uint16).max] = np.iinfo(np.uint16).max arm.image = np.array(arm.image, dtype=np.uint16) # noise converts array to int64 at some step - let's bring it back to uint16 print "Converting image array to %s" % arm.image.dtype # WRITE FITS FILE write_to_fits(arm) # WAVELENGTH SOLUTIONS; CREATE WAVETRACE REGION FILES for i in xrange(len(arm.wt)): if arm.wt[i]: wlt.wavelength_trace(arm, i) # SPAWN FITS OUTPUT IMAGE IN SAO-DS9 if args.ds9 or args.ds9_mosaic: if args.ds9_mosaic: ds9_param = '-mosaicimage iraf' else: ds9_param = '-mecube' if arm.WT_FLAG: if args.no_compress: call = 'ds9 %s.fits %s -region %s.reg' % (ds9_param, rm.outfile, arm.outfile) else: call = 'ds9 %s.fits.gz %s -region %s.reg' % (ds9_param, arm.outfile, arm.outfile) else: if args.no_compress: call = 'ds9 %s %s.fits' % (ds9_param, arm.outfile) else: call = 'ds9 %s %s.fits.gz' % (ds9_param, arm.outfile) print "Executing '%s'" % call try: subprocess.check_call(call.split()) except OSError, e: print e print "Shell call failed. You can just run the following line in the shell:" print call
import socket import en_decript as ed import noise as noise import ham as ham serv = socket.socket(socket.AF_INET, socket.SOCK_STREAM) serv.bind(('0.0.0.0', 8080)) serv.listen(5) while True: conn, addr = serv.accept() from_client = '' while True: data = conn.recv(4096) if not data: break from_client += data.decode() a = ed.str_to_BIN('holaquetal') b = noise.add_noise(a, 0.5) message = ed.BIN_to_bitarray(b) conn.send(message) conn.close() print('client disconnected')
def read_file_cpu(trainset, queue, batch_size, num_reference, img_size, num_prepare, sampling_rate, rseed=None): local_random = np.random.RandomState(rseed) n_train = len(trainset) trainset_index = local_random.permutation(n_train) idx = 0 while True: # read in data if the queue is too short # 参数补充定义 std = 1.2 # noise_std uniform_noise_max = 3.464 min_spatially_continuous_noise_factor = 0.01 max_spatially_continuous_noise_factor = 0.5 continuous_noise = 1 use_spatially_varying_uniform_on_top = 1 clip_input = 0 clip_input_bound = 2.0 while queue.full() == False: instance_size = batch_size - num_reference inst_batch = np.zeros([instance_size, img_size, img_size, 1]) inst_incomplete_batch = np.zeros([instance_size, img_size, img_size, 1]) for i in range(instance_size): image_path = trainset[trainset_index[idx+i]] img_dict = sio.loadmat(image_path) # 归一化 [-1, 1] img = img_dict['b'] / np.max(np.abs(img_dict['b'])) # print("img' : ", img) # os.system("pause") # incomplete img # incomplete_img = batch_multiply(batch, mask_c) # mask_c似乎还没有定义 # add noise to img, noisy_img也在0到1的范围 noisy_img = add_noise(img, local_random, std=std, uniform_max=uniform_noise_max, min_spatially_continuous_noise_factor=min_spatially_continuous_noise_factor, max_spatially_continuous_noise_factor=max_spatially_continuous_noise_factor, continuous_noise=continuous_noise, use_spatially_varying_uniform_on_top=use_spatially_varying_uniform_on_top, clip_input=clip_input, clip_input_bound=clip_input_bound ) if len(img.shape) < 3: img = np.expand_dims(img, axis=2) #(28, 28)->(28, 28, 1) inst_batch[i] = img # noisy_batch[i] = noisy_img inst_mask_c = generate_mask(instance_size, img_size, sampling_rate) inst_incomplete_batch = np.multiply(inst_batch, inst_mask_c) # batch *= 2.0 #为了弄到0到2的范围 # batch -= 1.0 #为了弄到-1到1的范围 # noisy_batch *= 2.0 # noisy_batch -= 1.0 # 添加,保持在-1到1的范围 inst_batch = np.clip(inst_batch, a_min = -1, a_max = 1) # noisy_batch = np.clip(noisy_batch, a_min = -1, a_max = 1) inst_incomplete_batch = np.clip(inst_incomplete_batch, a_min = -1, a_max = 1) #恢复到0-255, 这里还是不恢复到0-255,先归一化处理 # batch = batch * 127.5 + 127.5 # noisy_batch = noisy_batch * 127.5 + 127.5 if clip_input > 0: inst_batch = np.clip(inst_batch, a_min=-clip_input_bound, a_max=clip_input_bound) inst_noisy_batch = np.clip(inst_noisy_batch, a_min=-clip_input_bound, a_max=clip_input_bound) # queue.put([batch, noisy_batch]) # block until free slot is available queue.put([inst_batch, inst_incomplete_batch, inst_mask_c]) idx += batch_size # if idx > n_train: #reset when last batch is smaller than batch_size or reaching the last batch if idx > n_train - batch_size: trainset_index = local_random.permutation(n_train) idx = 0
return self.editedImg if __name__ == '__main__': input_filename = "sunset.jpg" if len(sys.argv) > 1: input_filename = sys.argv[1] srcImg = cv2.imread(input_filename) grayImg = cv2.cvtColor(srcImg, cv2.COLOR_BGR2GRAY) resultImg = cv2.cvtColor(grayImg, cv2.COLOR_GRAY2BGR) resultImg = noise.add_noise(resultImg, 30) resultImg = noise.shift_image(resultImg) cv2.imwrite("result.jpg", resultImg) srcImg = cv2.imread("result.jpg") glitch = Glitch(srcImg) IMG_SIZE_h, IMG_SIZE_w, _ = srcImg.shape fourcc = cv2.VideoWriter_fourcc('a', 'v', 'c', '1') video = cv2.VideoWriter('video.mp4', fourcc, 9.0, (IMG_SIZE_w, IMG_SIZE_h)) for _ in range(270): resultImg = glitch.get_image()
def read_file_cpu(trainset, queue, batch_size, num_prepare, rseed=None): local_random = np.random.RandomState(rseed) n_train = len(trainset) trainset_index = local_random.permutation(n_train) idx = 0 while True: # read in data if the queue is too short while queue.full() == False: batch = np.zeros([batch_size, img_size, img_size, 3]) noisy_batch = np.zeros([batch_size, img_size, img_size, 3]) for i in range(batch_size): image_path = trainset[trainset_index[idx+i]] img = sp.misc.imread(image_path) # <Note> In our original code used to generate the results in the paper, we directly # resize the image directly to the input dimension via (for both ms-celeb-1m and imagenet) img = sp.misc.imresize(img, [img_size, img_size]).astype(float) / 255.0 # The following code crops random-sized patches (may be useful for imagenet) #img_shape = img.shape #min_edge = min(img_shape[0], img_shape[1]) #min_resize_ratio = float(img_size) / float(min_edge) #max_resize_ratio = min_resize_ratio * 2.0 #resize_ratio = local_random.rand() * (max_resize_ratio - min_resize_ratio) + min_resize_ratio #img = sp.misc.imresize(img, resize_ratio).astype(float) / 255.0 #crop_loc_row = local_random.randint(img.shape[0]-img_size+1) #crop_loc_col = local_random.randint(img.shape[1]-img_size+1) #if len(img.shape) == 3: #img = img[crop_loc_row:crop_loc_row+img_size, crop_loc_col:crop_loc_col+img_size,:] #else: #img = img[crop_loc_row:crop_loc_row+img_size, crop_loc_col:crop_loc_col+img_size] if np.prod(img.shape) == 0: img = np.zeros([img_size, img_size, 3]) if len(img.shape) < 3: img = np.expand_dims(img, axis=2) img = np.tile(img, [1,1,3]) ## random flip #flip_prob = local_random.rand() #if flip_prob < 0.5: #img = img[-1:None:-1,:,:] #flip_prob = local_random.rand() #if flip_prob < 0.5: #img = img[:,-1:None:-1,:] # add noise to img noisy_img = add_noise(img, local_random, std=std, uniform_max=uniform_noise_max, min_spatially_continuous_noise_factor=min_spatially_continuous_noise_factor, max_spatially_continuous_noise_factor=max_spatially_continuous_noise_factor, continuous_noise=continuous_noise, use_spatially_varying_uniform_on_top=use_spatially_varying_uniform_on_top, clip_input=clip_input, clip_input_bound=clip_input_bound ) batch[i] = img noisy_batch[i] = noisy_img batch *= 2.0 batch -= 1.0 noisy_batch *= 2.0 noisy_batch -= 1.0 if clip_input > 0: batch = np.clip(batch, a_min=-clip_input_bound, a_max=clip_input_bound) noisy_batch = np.clip(noisy_batch, a_min=-clip_input_bound, a_max=clip_input_bound) queue.put([batch, noisy_batch]) # block until free slot is available idx += batch_size if idx > n_train: #reset when last batch is smaller than batch_size or reaching the last batch trainset_index = local_random.permutation(n_train) idx = 0
import load_model import train import attack import noise # Hyperparameters epochs = 20 adv_mult = 0.2 adv_step = 0.05 attack_eps = 0.03 attack_norm = np.inf noise_factor = 0.01 (x_train, y_train, y_train_cat), (x_test, y_test, y_test_cat) = load_data.load_fashion_mnist() x_train_noise_001 = noise.add_noise(x_train, 0.01) x_train_noise_005 = noise.add_noise(x_train, 0.05) x_train_noise_01 = noise.add_noise(x_train, 0.1) x_test_noise_001 = noise.add_noise(x_test, 0.01) x_test_noise_005 = noise.add_noise(x_test, 0.05) x_test_noise_01 = noise.add_noise(x_test, 0.1) data_models = [] for selected_train_data in [ x_train, x_train_noise_001, x_train_noise_005, x_train_noise_01 ]: for selected_model in [ load_model.lenet_base, load_model.lenet_max, load_model.lenet_deep5, load_model.lenet_max_deep5, load_model.lenet_large, load_model.lenet_max_large,