def main(): imgpath = "lena.png" m = "s&p" cv2.imshow("Image", noise.noise(imgpath, "0")) cv2.imshow("Image" + m, noise.noise(imgpath, m)) cv2.waitKey(0) cv2.destroyAllWindows()
def fly(self): s = self s.t += 1 s.w1[1] = -1+u.trapwave(s.t*s.aspd)*3 s.w2[1] = -2+u.trapwave(s.t*s.aspd)*8 s.w3[1] = -1+u.trapwave(s.t*s.aspd+math.pi*0.2)*12 s.w2[0] = -3+math.sin(s.t*s.aspd-math.pi*0.5)*2 s.w3[0] = -5+math.sin(s.t*s.aspd-math.pi*0.5)*3 s.wingCoordToRL(5,s.w1) s.wingCoordToRL(6,s.w2,s.w1,s.skel[5][0]) s.wingCoordToRL(7,s.w3,s.w2,s.skel[6][0],s.skel[5][0]) s.wingCoordToRL(8,s.w1) s.wingCoordToRL(9,s.w2,s.w1,s.skel[5][0]) s.wingCoordToRL(10,s.w3,s.w2,s.skel[6][0],s.skel[5][0]) s.to(4,0,-0+math.sin(s.t*s.aspd+math.pi)*10) s.to(1,0,-5+math.sin(s.t*s.aspd)*1) s.to(12,0,-40) s.to(14,0,-40) s.to(13,0,10+math.sin(s.t*s.aspd)*5 + 10*noise.noise(s.t*s.aspd*0.01,1)-5) s.to(15,0,10+math.sin(s.t*s.aspd)*5 + 10*noise.noise(s.t*s.aspd*0.01,2)-5) #s.x += s.v[0]*s.dir s.y += 0.2*self.s*math.sin(s.t*s.aspd+math.pi)#30.5*s.v[1]+0.5*s.v[1]*(0.5*(math.sin(s.t*s.aspd)+1))
def rest(self): s = self s.t +=1 for i in range(0,len(s.skel)): if i != 6 and i != 1: s.to(i,0,s.ssk[i][0]+noise.noise(i*0.05,s.t*0.05),5) s.to(6,0,30+math.cos(s.t*s.aspd*0.5)*10) noi = max(min((noise.noise(s.t*s.aspd*0.05)-0.4)*40,1),-1) s.to(1,0,-5+noi*50,5) s.to(0,0,-40-noi*40,5)
def walk(self): s = self s.t += 1 s.f1 = 6 + math.cos(s.t*s.aspd*2)*2 +noise.noise(s.t*s.aspd)*2 s.f2 = 8 + math.cos(s.t*s.aspd*2)*2 #print self.animations if self.status[1] == "": for i in range(0,len(s.skel)): for j in range(0,max(0,len(self.animations))): for a in self.animations[j]: if i == a[0][0]: #print "y" return s.to(i,0,s.ssk[i][0]+10*(noise.noise(i*0.05,s.t*0.05)-0.5),2)
def rest(self): s = self #s.t = -1 #math.pi s.t2 += 1 s.to(5,0,20+180*2*((s.skel[5][0]>0)-0.5),10) s.to(6,0,-20+180*2*((s.skel[6][0]>0)-0.5),10) s.to(7,0,20-180*2*((s.skel[10][0]<0)-0.5),10) s.to(8,0,20+180*2*((s.skel[8][0]>0)-0.5),10) s.to(9,0,-20+180*2*((s.skel[9][0]>0)-0.5),10) s.to(10,0,20-180*2*((s.skel[10][0]<0)-0.5),10) s.to(12,0,30,10) s.to(14,0,30,10) s.to(13,0,100,10) s.to(15,0,100,10) noi = max(min((noise.noise(s.t2*s.aspd*0.5)-0.3)*50,1),-1) s.to(1,0,-10+noi*20,5) s.to(1,1,5-noi*2,5) s.to(4,0,-10+noi*10,5) s.x += s.v[0]*s.dir s.y += s.v[1] if s.y>=0: s.v[1] = 0 s.v[0] = 0 s.y = 0 else: s.v[1] += 0.2*s.s if random.random() < 0.02 and s.v[1] == 0: s.v[1]=-1*s.s r = random.choice([1,1]) s.v[0]+=0.5*r*s.s
def rest(self): s = self s.t+=1 noi = noise.noise(s.t*s.aspd*0.5) s.f1 += (6+(noi*5)-s.f1)/2 s.s1 += (1-(noi*4)-s.s1)/2 s.s2 += (1-(noi*4)-s.s2)/2
def generate_noise(width, height): noise_map = [] points = 256 span = 5.0 speed = 1.0 botom_range = 0 top_range = 0 xoff = BASE_XOFF for _x in range(width): new_row = [] xoff = float(_x) * span / points - 0.5 * span for _y in range(height): noise_value = noise(xoff + BASE_XOFF) new_row.append(noise_value) xoff += random.random() if noise_value < botom_range: botom_range = noise_value elif noise_value > top_range: top_range = noise_value noise_map.append(new_row) difference = float(top_range - botom_range) for x in range(width): for y in range(height): noise_map[x][y] = (noise_map[x][y] - botom_range) / difference return noise_map
def gen_recover_period(prange, ntimes, npers, randtimes = 0.0, rantnormp = 0.0, snrnoise = 0.0, normpropnoise = 0.0, samples = 100): """Generate some periodic data and then try to recover the maximum period under various conditions. prange = period to analyse (kicking off with a single period) with lower bound and upper bound for search ntimes number of times to generate signal for npers number of periods (possibly fractional) to scan for randtimes whether we vary the sample times 0.0 none, 1 probably max rantnormp variation in times proortion between uniform (0.0) and gaussian (1.0) snr signal to noise ration of noise to add 0 for None normpropnoise proportion of noise uniform (0.0) or gaussian (1.0) samples is the number of samples for the periodogram Return fractional error""" lbound, period, ubound = prange timelist, amps = siggen.siggen(period, ntimes=ntimes, npers=npers, randv=randtimes, unorm=rantnormp, randphase=True) if snrnoise > 0.0: amps = noise.noise(amps, snrnoise, normpropnoise) # OK now lets do our stuff model = LombScargle().fit(timelist, amps, 0.001) periods = np.linspace(lbound, ubound, samples) pgram = model.periodogram(periods) # Find maximum maxes = argmaxmin.maxmaxes(periods, pgram) if len(maxes) == 0: return 1.0 maxp = periods[maxes[0]] return abs(maxp - period) / period
def __init__(self, seed, n_state, n_action, batch_size=64, buffer=1e5, gamma=0.99, lr_actor=1e-4, lr_critic=1e-3, weight_decay=0, tau=1e-3): self.batch_size = batch_size #init actor self.local_actor = Actor(n_state, n_action, seed).to(device) self.target_actor = Actor(n_state, n_action, seed).to(device) self.optim_actor = torch.optim.Adam(self.local_actor.parameters(), lr=lr_actor) #init critic self.local_critic = Critic(n_state, n_action, seed).to(device) self.target_critic = Critic(n_state, n_action, seed).to(device) self.optim_critic = torch.optim.Adam(self.local_critic.parameters(), lr=lr_critic, weight_decay=weight_decay) #init memory self.memory = memory(int(buffer), device, seed) self.tau = tau self.gamma = gamma self.noise = noise(n_action, seed=seed)
def float_noise(*args): """Returns a float value which is a (pseudo) random function of its arguments. This function is imported from the noise module. """ la = len(args) if la==1: return noise.noise(args[0]) elif la==2: return noise.noise(args[0],args[1]) elif la==3: return noise.noise(args[0],args[1],args[2]) elif la==4: return noise.noise(args[0],args[1],args[2],args[3]) else: raise TypeError("the function takes between 1 and 4 arguments (%s given)"%(la))
def test_noise(img): print('\t[Loading...] Calculating..') start = perf_counter() result = noise(img, -9, 20) finish = perf_counter() cv2.imshow('Add noise', result) print('\tTime: ' + str(finish - start)) return result
def fill(self): for y in range(0, Chunk.size): for x in range(0, Chunk.size): rand = noise((x + self.x) / 8, (y + self.y) / 8, .1, octaves=2) if rand < .35 and rand > -.35: value = 1 else: value = 0 self.grid[Chunk.size - 1 - y][x] = value
def fill(zone): noise_f = noise(6) bg = generate(zone.y, zone.x, noise_f) for y, row in enumerate(bg): for x, col in enumerate(row): val = FILTERS['mountains'](col) if val > 0.25: zone.set_field(y, x, '=')
def draw(): global noisy, WIDTH, HEIGHT set_line_width(1.0) set_source_rgba(1.0,1.0,1.0,0.2) rectangle(0,0,WIDTH,HEIGHT) fill() for i in range(num): x, y = pos[i] # print "Drawing circle at: %s, %s" % (x, y) set_source_rgba(R1,G1,B1) arc(x, y, 4, 0, 2 * pi) stroke() set_source_rgba(R2,G2,B2,100/255.0) arc(x, y, 4.5, 0, 2 * pi) stroke() set_source_rgba(100/255.0,100/255.0,100/255.0,1.0) vel[i][0] = 10 * noise(200+x*0.007, 200+y*0.007, noisy*2)*cos(4*pi*noise(x*0.003,y*0.003, noisy)) vel[i][1] = 10 * noise(200+x*0.007, 200+y*0.007, noisy*2)*sin(4*pi*noise(x*0.003,y*0.003, noisy)) ''' # If you want to adjust the acceleration of the circles for j in range(num): if j != i: jx, jy = pos[j] den1, den2 = dist(x, y, jx, jy), (5+dist(x, y, jx, jy)) ** 2 acc[i][0] += (x-jy)/den1/den2 acc[i][1] += (y-jy)/den1/den2 ''' pos[i] += vel[i] if not (0 < pos[i][0] < WIDTH) or not (0 < pos[i][1] < HEIGHT): pos[i][0], pos[i][1] = randrange(0, WIDTH), randrange(0, HEIGHT) vel[i] = 0 # acc[i] = 0 noisy += 0.007
def hatch(IM, sc=16): print("hatching...") PX = IM.load() w, h = IM.size lg1 = [] lg2 = [] for x0 in range(w): for y0 in range(h): x = x0 * sc y = y0 * sc if PX[x0, y0] > 144: pass elif PX[x0, y0] > 64: lg1.append([(x, y + sc / 4), (x + sc, y + sc / 4)]) elif PX[x0, y0] > 16: lg1.append([(x, y + sc / 4), (x + sc, y + sc / 4)]) lg2.append([(x + sc, y), (x, y + sc)]) else: lg1.append([(x, y + sc / 4), (x + sc, y + sc / 4)]) lg1.append([(x, y + sc / 2 + sc / 4), (x + sc, y + sc / 2 + sc / 4)]) lg2.append([(x + sc, y), (x, y + sc)]) lines = [lg1, lg2] for k in range(0, len(lines)): for i in range(0, len(lines[k])): for j in range(0, len(lines[k])): if lines[k][i] != [] and lines[k][j] != []: if lines[k][i][-1] == lines[k][j][0]: lines[k][i] = lines[k][i] + lines[k][j][1:] lines[k][j] = [] lines[k] = [l for l in lines[k] if len(l) > 0] lines = lines[0] + lines[1] for i in range(0, len(lines)): for j in range(0, len(lines[i])): lines[i][j] = int(lines[i][j][0] + sc * noise.noise(i * 0.5, j * 0.1, 1) ), int(lines[i][j][1] + sc * noise.noise(i * 0.5, j * 0.1, 2)) - j return lines
def getcontours(IM, sc=2): print("generating contours...") IM = find_edges(IM) IM1 = IM.copy() IM2 = IM.rotate(-90, expand=True).transpose(Image.FLIP_LEFT_RIGHT) dots1 = getdots(IM1) contours1 = connectdots(dots1) dots2 = getdots(IM2) contours2 = connectdots(dots2) for i in range(len(contours2)): contours2[i] = [(c[1], c[0]) for c in contours2[i]] contours = contours1 + contours2 for i in range(len(contours)): for j in range(len(contours)): if len(contours[i]) > 0 and len(contours[j]) > 0: if sum_distance(contours[j][0], contours[i][-1]) < 8: contours[i] = contours[i] + contours[j] contours[j] = [] for i in range(len(contours)): contours[i] = [contours[i][j] for j in range(0, len(contours[i]), 8)] contours = [c for c in contours if len(c) > 1] for i in range(0, len(contours)): contours[i] = [(v[0] * sc, v[1] * sc) for v in contours[i]] for i in range(0, len(contours)): for j in range(0, len(contours[i])): contours[i][j] = int(contours[i][j][0] + 10 * noise.noise(i * 0.5, j * 0.1, 1)), int( contours[i][j][1] + 10 * noise.noise(i * 0.5, j * 0.1, 2)) return contours
def init(self): self.field = [] xoff = 0 xrand = Prandom(0, 1) yrand = Prandom(0, 1) for i in range(self.cols): yoff = 0 tmp = [] for j in range(self.rows): theta = Pmap(noise(xoff + xrand, yoff + yrand), 0, 1, 0, 2 * pi) assert theta < 2 * pi # Polar to cartesian coordinate transformation to get x and y components of the vector tmp.append(PVector(cos(theta), sin(theta))) yoff += 0.01 self.field.append(tmp) xoff += 0.01
def _generate(self, x: int): l = [] y = 0 for _ in range(round((noise(x * 0.01) + 1) * 50) + 50): l.append(blocks.Stone((x, y))) y += 1 for _ in range(3): l.append(blocks.Dirt((x, y))) y += 1 l.append(blocks.Grass((x, y))) y += 1 for _ in range(5): l.append(blocks.Air((x, y))) y += 1 for _ in range(255 - len(l)): l.append(blocks.Air((x, y))) y += 1 self._generated[x] = l
for y, row in enumerate(bg): for x, col in enumerate(row): val = FILTERS['mountains'](col) if val > 0.25: zone.set_field(y, x, '=') if __name__ == '__main__': from bmp import Bitmap size = 500 def rgb(x): return (x, x, x) f = Bitmap('output.bmp', size, size) perlin = Perlin() pnoise_harmonic = noise(6) pnoise = perlin.noise n = generate(size, size, pnoise_harmonic) for y, row in enumerate(n): for x, col in enumerate(row): val = FILTERS['mountains'](col) f.set_pixel(y, x, rgb(val)) f.flush() f.close()
saveTime = time.time() totalTime = saveTime - start_time print("Totaly data prework time " + str(totalTime) + " seconds") print(user_venc_in_plane) #os.system("python /home/condauser/Documents/ao_seg/aorta_seg.py --path=/home/condauser/Documents/ao_seg/MK") ppp = "/home/condauser/Documents/ao_seg/MK" image, mrStruct, netflow = eddy(ppp) eddyTime = time.time() totalEddyTime = eddyTime - saveTime print("Totaly eddy time " + str(totalEddyTime) + " seconds") #gc.collect() image, mrStruct = noise(image, mrStruct, netflow) noiseTime = time.time() totalNoiseTime = noiseTime - eddyTime print("Totaly Noise time " + str(totalNoiseTime) + " seconds") #gc.collect() cc = TFrecord(mrStruct, user_venc_in_plane) print("TFrecord finish") io.savemat('MK/vel_struct.mat', {'mrStruct': mrStruct}) del mrStruct jjj = Unet_test() #del jj aliasTime = time.time() totalAliasTime = aliasTime - noiseTime print("Totaly Aliasing time " + str(totalAliasTime) + " seconds") #jjj = io.loadmat("/home/condauser/Documents/ao_seg/new_vel.mat")
print "Unable to open", ewfile, "error was", e.args[1] sys.exit(11) except ValueError as e: print "Conversion error in", ewfile, "error was", e.args[0] sys.exit(12) signals = [] for sig in siglist: nsig = sigdets() nsig.parse(sig) signals.append(nsig) col2 = np.zeros_like(ewf[1]) col4 = col2 + 1.0 col6 = col2 + 1.0 for sig in signals: col2 += sig.apply(ewf[1], 0) col4 += sig.apply(ewf[1], 1) col6 += sig.apply(ewf[1], 2) if snr != 0: col2 = noise.noise(col2, snr, gauss) col4 = noise.noise(col4, snr, gauss) col6 = noise.noise(col6, snr, gauss) ewf[2] = col2 ewf[4] = col4 ewf[6] = col6 np.savetxt(outfile, ewf.transpose())
if dp[pointer + 1][1] > dp[pointer + 1][3]: text += "0" index = 3 else: text += "0" index = 1 elif index == 3: if dp[pointer + 1][1] > dp[pointer + 1][3]: text += "1" index = 3 else: text += "1" index = 1 pointer += 1 return text[::-1] text = "amirhosseinahmadi" print("Plain Text:", text) huffman_encoded = huffman_encoder(text) print("Huffman Encoding:", huffman_encoded) conv_encoded = convolutional_enccoder(huffman_encoded) print("Convolutional Encoding:", conv_encoded) conv_encoded = [int(item) for item in conv_encoded] noised_data = noise(conv_encoded) noised_data = list(map(str, noised_data)) noised_data = "".join(noised_data) viterbi_decoded = viterbi_decoder(noised_data) print("Viterbi Decoding:", viterbi_decoded) huffman_decoded = huffman_decoder(viterbi_decoded) print("Huffman Decoding:", huffman_decoded)
def get_price_at_minutes(self, minutes): noise_seed(self.cost_seed) cost = self.cost_min + self.cost_range * noise(self.cost_offset + minutes / 2000) return max(1, int(cost))
phasesr = np.arange(0.0, 1.0, res['pstep']) phases = phasesr * TWOPI errs = np.zeros_like(times) + err lo = [] mid = [] hi = [] s1 = [] s2 = [] s3 = [] for p in phases: sig = a1 * np.sin(f1 * times) + a2 * np.sin(f2 * times + p) if snr != 0: sig = noise.noise(sig, snr, gauss) if usegatspy: model = LombScargle().fit(times, sig, err) pgram = model.periodogram(periods) else: pgram = lsas(times, sig, errs, freqs) maxima = argmaxmin.maxmaxes(periods, pgram) if len(maxima) > 3: maxima = maxima[0:3] maxp = list(periods[maxima]) h, m, l = maxp s1.append(h) s2.append(m) s3.append(l) maxp.sort() l, m, h = maxp
suff = resargs['suff'] if suff is None: suff = '.' + string.replace("n%#.3g" % snr, ".", "_") elif len(suff) == 0: print "Invalid suffix should be at least 1 char" sys.exit(11) elif suff[0] != '.': suff = '.' + suff errors = 0 ok = 0 for spec in specs: try: indata = np.loadtxt(spec, unpack=True) indata[ycolumn] = noise.noise(indata[ycolumn], snr, gauss) np.savetxt(spec + suff, indata.transpose()) except IndexError: print "Invalid y column", ycolumn, "in", spec errors += 1 continue except ValueError: print "Invalid values in", spec errors += 1 continue except IOError as e: print "IO Error in", spec, "was", e.args[1] errors += 1 ok += 1 if errors > 0:
import encrypt import parse_mat import network_encoding import noise import viterbi_decoding import decrypt string = 'saharrajabi' probs = parse_mat.parse('data\\freq.mat').get('freq') codes = {} print 'name: ' + string source_encrypted = encrypt.encrypt(probs, string, codes) print 'source encoder output: ' + source_encrypted network_encrypted = network_encoding.encode(source_encrypted) print 'network encoder output: ' + network_encrypted network_encrypted = map(lambda x: int(x), list(network_encrypted)) noisy_data = noise.noise(network_encrypted) noisy_data = ''.join(map(lambda x: str(x), noisy_data)) print 'noisy data: ' + noisy_data err, network_decoded = viterbi_decoding.decode(noisy_data) print 'network decoder output: ' + network_decoded decoded = decrypt.decrypt(network_decoded, codes) print 'source decoder output: ' + decoded
r = deriv.sin(x) print "r", deriv.v(r) print "dr/dx", deriv.v(deriv.d(r, x)) print "dr/dy", deriv.v(deriv.d(r, y)) print "d2r/dx2", deriv.v(deriv.d(r, x, x)) print "d2r/dy2", deriv.v(deriv.d(r, y, y)) print "d2r/dx/dy", deriv.v(deriv.d(r, x, y)) print "d2r/dy/dx", deriv.v(deriv.d(r, y, x)) print print print import noise x = -1 + noise.noise(3) y = 2 + noise.noise(7) r = x, y, x + y, x - y, x / y, x * x, x * y, y * y print ' '.join("%7.03f" % noise.E(x) for x in r), "E" print ' '.join("%7.03f" % noise.var(x) for x in r), "variance" print print "covariance matrix:" for row in noise.cov_matrix(r): for col in row: print "%7.03f" % col, print
def mk_noise(self): self.StatusLabel.hide() noise.noise(im) self.StatusLabel.show() im.last_op = 'noise'
def main(): startTime = time.time() args = _getparser().parse_args() _dispParser(args) tf._stats(args.fname.name) header, _, offset, obs, dates = tf._read(args.fname.name) A, cycle = dm(args.fname.name, args.periods, args.fs)._coefficients() L = obs[:, 0].reshape(len(obs[:, 0]), 1) dof = len(A[:, 0]) - len(A[0, :]) unkOLS, sUnkOLS, s0OLS, resid = ls._lse(A, L) WRMS = np.sqrt((resid.T @ resid) / len(A[:, 0]))[0][0] #print("WRMS: " + str(WRMS)) for line in header: if 'UNIT' in line: unit = line.split(": ")[1].split("\n")[0] break unitLabel = [unit] * len(unkOLS) unitLabel[1] = unitLabel[1] + "/year" unkLabel = ['intercept', 'trend'] offsetLabel = [ "{}{}".format(a, b) for a, b in zip(["offset at "] * len(offset), offset) ] unkLabel = np.append(unkLabel, offsetLabel) seasLabel = [] for s1 in range(len(cycle)): seasLabel = np.append(seasLabel, [ 'sin ' + "{:10.4f}".format(cycle[s1]), 'cos ' + "{:10.4f}".format(cycle[s1]) ]) unkLabel = np.append(unkLabel, seasLabel) if args.ols: print("\n Ordinary Least-squares estimation\n") for o in range(len(unkOLS)): print("%20s: %10.4f +- %9.4f %s" % \ (unkLabel[o], \ unkOLS[o], \ sUnkOLS[o], \ unitLabel[o])) print("\n") print("%20s: %14.8f %8s\n" % ('s0', s0OLS, unit)) print("\nElapsed time : %.1f sec\n" % (time.time() - startTime)) return for line in header: if 'DATE FORMAT' in line: dateFormat = line.split(": ")[1].split("\n")[0] break _, J = noise(dates, dateFormat, args.kappa, args.fs).mat() resultTemp = np.zeros((args.nRND**2, 3)) wnaLast = np.zeros((args.repeat, 1), dtype=float) fnaLast = np.zeros((args.repeat, 1), dtype=float) for i in range(args.repeat): printProgressBar(i + 1, args.repeat, prefix=' Progress', suffix='Complete') _, yWNA, _, yFNA = ss(args.alpha, WRMS, dof, args.nRND)._randomPoints() idx = 0 for j in range(args.nRND): cWN = (yWNA[j]**2 * np.eye(len(A[:, 0]), dtype=float)) for k in range(args.nRND): C = cWN + (yFNA[k]**2 * J) _, _, s0, _ = ls._lse(A, L, la.cholesky(la.inv(C)).T) resultTemp[idx, :] = [yWNA[j], yFNA[k], s0] idx += 1 #np.savetxt('15-s0s.dat', resultTemp, fmt="%10.10f") xx = np.arange(min(resultTemp[:, 0]), max(resultTemp[:, 0]), args.incr) yy = np.arange(min(resultTemp[:, 1]), max(resultTemp[:, 1]), args.incr) XX, YY = np.meshgrid(xx, yy) ZZ = griddata((resultTemp[:, 0], resultTemp[:, 1]), resultTemp[:, 2], (XX, YY), method='cubic') #np.savetxt('1-XX.dat', XX, fmt="%10.4f") #np.savetxt('2-YY.dat', YY, fmt="%10.4f") #np.savetxt('3-ZZ.dat', ZZ, fmt="%10.4f") if (np.min(np.ma.masked_invalid(ZZ)) < 1) and (np.max( np.ma.masked_invalid(ZZ)) > 1): cs = plt.contour(xx, yy, np.ma.masked_invalid(ZZ), [1]) L1 = cs.collections[0].get_paths()[0] coorL1 = L1.vertices else: index = np.where( abs(np.ma.masked_invalid(ZZ) - 1) == np.amin(abs(np.ma.masked_invalid(ZZ) - 1))) coorL1 = np.array([[XX[index[0][0],index[1][0]], \ YY[index[0][0],index[1][0]]]]) #np.savetxt('4-coorL1.dat', coorL1, fmt="%10.4f") s0 = np.zeros((len(coorL1[:, 0]), 1), dtype=float) for d in range(len(coorL1[:, 0])): C2 = (coorL1[d,0]**2 * np.eye(len(A[:,0]), dtype=float)) + \ (coorL1[d,1]**2 * J) _, _, s0[d], _ = ls._lse(A, L, la.cholesky(la.inv(C2)).T) diffIDX = np.where(abs(s0 - 1) == np.amin(abs(s0 - 1)))[0][0] wnaLast[i] = coorL1[diffIDX, 0] fnaLast[i] = coorL1[diffIDX, 1] #np.savetxt('5-noiseAmp.dat', np.concatenate((wnaLast, fnaLast), axis=1), fmt="%10.4f") Cfin = (statistics.median(wnaLast)**2 * np.eye(len(A[:,0]), dtype=float)) + \ (statistics.median(fnaLast)**2 * J) unk_fin, sUnk_fin, s0_fin, _ = ls._lse(A, L, la.cholesky(la.inv(Cfin)).T) print("\n") for o in range(len(unk_fin)): print("%20s: %10.4f +- %9.4f %s" % \ (unkLabel[o], \ unk_fin[o], \ sUnk_fin[o], \ unitLabel[o])) print("\n") print("%20s: %10.4f %s" % ('wna', statistics.median(wnaLast), unit)) print("%20s: %10.4f %s" % ('fna', statistics.median(fnaLast), unit + "/year^0.25")) print("%20s: %14.8f %s\n" % ('s0', s0_fin, unit)) if args.writeModel: for ii in range(len(header)): if 'COMMENT' and 'outliers' in header[ii]: header[ii] = "* COMMENT : Model values" + "\n" break modelFilename = (args.fname.name.split(".")[0] + "_model.tse") tf._write(modelFilename, \ header, \ np.concatenate(((A @ unk_fin), np.zeros((len(A[:,0]),1), dtype=float)), axis=1), \ dates) print("\nElapsed time : %.1f sec\n" % (time.time() - startTime))
# set env env = ArmEnv([0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]) s_dim = env.state_dim a_dim = env.action_dim a_bound = env.action_bound # set RL method (continuous) a_scale = [1000, 3000] #a_scale = [0, 10] rl = DDPG(a_dim, s_dim, a_scale) noise_mean = 0 noise_std_dev = 0.2 noise_theta = 0.15 noise_dt = env.dt noise = noise(a_dim, noise_mean, noise_std_dev, noise_theta, noise_dt) steps = [] def train(): # start training for i in range(MAX_EPISODES): s = env.reset() noise.reset() ep_r = 0. for j in range(MAX_EP_STEPS): #j = 0 #while not (s[0] > 400 or s[1] > 400 or s[0] < 0 or s[1] < 0): #env.render()
import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import random import array import cv2 from noise import noise from loader import MNIST from save import save __all__ = [MNIST, ] absPath = os.path.dirname(__file__) mnist = MNIST(absPath) noise = noise() filesave = save() def serialize(image): im_array = np.zeros(784, np.int32) #im_array = array.array('i', (0 for k in range(784))) k = 0 for i in xrange(image.__len__()): for j in xrange(image[i].__len__()): im_array[k] = int(round(image[i, j])) if im_array[k] < 0: im_array[k] = 0 k = k + 1 return im_array
hs = hr = 1.0 results.append([obst, obst, ew, 0.0, hs, 0.0, hr, 0,0]) continue ewleft, ewright = prof.ewinds if ewleft == ewright: print "Error, cannot find EW in", sf errors += 1 nohorns += 1 ew = 0.0 hs = hr = 1.0 results.append([obst, obst, ew, 0.0, hs, 0.0, hr, 0.0]) continue if snr > -1000.0: amps = noise.noise(amps, snr, gauss) ewsz = si.simps(amps[ewleft:ewright+1]-1.0, wavelengths[ewleft:ewright+1]) ew = ewsz - (wavelengths[ewright] - wavelengths[ewleft]) if prof.twinpeaks: lhmax, rhmax = prof.maxima minind = prof.minima[0] minamp = amps[minind] below_minamp = np.where(amps < minamp)[0] lwhere = below_minamp[below_minamp < lhmax][-1] + 1 rwhere = below_minamp[below_minamp > rhmax][0] - 1 lhornsz = si.simps(amps[lwhere:minind+1] - 1.0, wavelengths[lwhere:minind+1]) rhornsz = si.simps(amps[minind:rwhere+1]- 1.0, wavelengths[minind:rwhere+1]) lwl = wavelengths[minind] - wavelengths[lwhere] rwl = wavelengths[rwhere] - wavelengths[minind]
for letter in letternames: letterpath = path_original_letters + '/' + letter newletterpath = path_new_letters + '/' + letter + '/' if not os.path.exists(newletterpath): os.mkdir(newletterpath) imagenames = os.listdir(letterpath) for imagename in imagenames[0:5]: imagepath = letterpath + '/' + imagename image = cv2.imread(imagepath,0) #read as grayscale image #print(newletterpath) #Now we will do the follow with all images: rotation(image, newletterpath + imagename[0:-4], [5,10,15,20,25,30]) noise(image, newletterpath + imagename[0:-4], [1.2,1.4,1.6,1.8,2]) translation(image, newletterpath + imagename[0:-4],[3,5]) shearing(image, newletterpath + imagename[0:-4],[0,0.5,0.8,1.2])
import Image import math size = 256 inv = 1.0 / size im = Image.new("RGB", (size, size)) redOffs = (1.3579, 0.25672, 0.4567) greenOffs = (2.4786, 1.54567, 2.654) blueOffs = (3.5795, 2.16713, 1.0912) # now build the texture for x in range(size): for y in range(size): x1 = inv * x y1 = inv * y # get func value based on noise n = (1 + noise.noise(redOffs[0] + 35 * x1, redOffs[1] + 4 * y1, redOffs[2])) * 0.15 v = (y1 + n) * 0.5 if v < 0: v = 1.0 im.putpixel((x, y), (255 * v, 0, 0)) im.show() im.save("ThirdSpace.bmp", "bmp")
from noise import pnoise2 as noise parts = [] rings = [] height = 40 segs = 30 h_freq_scale = .1 a_freq_scale = 1 for i in range( height ): ring = [] for a in range( segs ): ring.append( (noise( i*h_freq_scale, math.sin((float(a)/segs)*math.pi)*a_freq_scale, 5 )+1)*.7 ) rings.append( ring ) h_scale = lambda h: (height+1 - h)*.25 + 5 a_to_p = lambda a, v, h: [math.cos(a)*h_scale(h)*v,math.sin(a)*h_scale(h)*v,h] for h in range( len( rings ) -1 ): ringa = rings[h] ringb = rings[h+1] points = [] print h for i in range( len( ringa ) ): print ringa[i] points.append( a_to_p( i * ((math.pi*2)/segs), ringa[i], h ) ) for i in range( len( ringb ) ): points.append( a_to_p( i * ((math.pi*2)/segs), ringb[i], h+1 ) )
def n2D(x, y, offs): return 127 * noise.noise(offs[0] + x, offs[1] + y, offs[2]) + 128
def __init__(self,size=1000): self.size=size self.grid=[noise.noise(i) in range(size)] self.gravity=[0,5]
# nearest neighbor algorithm from upscale import upscale p1 = args["factor"] # pixel p2 = args["factor2"] new_size = (p1, p2) output = upscale(input_image, new_size) save(option, output) elif option == "crop" or option2 == "crop": # cropping from crop import crop p1 = args["factor"] # pos p2 = args["factor2"] pos = (p1, p2) #origin #end defined in crop.py output = crop(input_image, pos) save(option, output) elif option == "contrast" or option2 == "contrast": from contrast import change_contrast factor = args["factor"] # factor output = change_contrast(input_image, factor) save(option, output) elif option == "noise" or option2 == "noise": from noise import noise factor = args["factor"] # factor output = noise(input_image, factor) save(option, output) else: print( "Usage: python pmake.py o -i<input_img>.<extention> -o <option1> or -oo<option2> -f1<factor 1> -f2 <factor2>" )
def reverb(samples): n = noise(0.8, 0.6, 0.01, 0.0) n[0] = 1 return list(np.convolve(samples, n))
def f(): a = noise(3) b = 8 + noise(2) return a, b, a + b, a /b, a*a, a*b, b*b